Multi-Valued Mappings of Bounded Generalized Variation
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 611-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the mappings taking real intervals into metric spaces and possessing a bounded generalized variation in the sense of Jordan–Riesz–Orlicz. We establish some embeddings of function spaces, the structure of the mappings, the jumps of the variation, and the Helly selection principle. We show that a compact-valued multi-valued mapping of bounded generalized variation with respect to the Hausdorff metric has a regular selection of bounded generalized variation. We prove the existence of selections preserving the properties of multi-valued mappings that are defined on the direct product of an interval and a topological space, have a bounded generalized variation in the first variable, and are upper semicontinuous in the second variable.
@article{MZM_2002_71_4_a12,
     author = {V. V. Chistyakov},
     title = {Multi-Valued {Mappings} of {Bounded} {Generalized} {Variation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {611--632},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a12/}
}
TY  - JOUR
AU  - V. V. Chistyakov
TI  - Multi-Valued Mappings of Bounded Generalized Variation
JO  - Matematičeskie zametki
PY  - 2002
SP  - 611
EP  - 632
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a12/
LA  - ru
ID  - MZM_2002_71_4_a12
ER  - 
%0 Journal Article
%A V. V. Chistyakov
%T Multi-Valued Mappings of Bounded Generalized Variation
%J Matematičeskie zametki
%D 2002
%P 611-632
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a12/
%G ru
%F MZM_2002_71_4_a12
V. V. Chistyakov. Multi-Valued Mappings of Bounded Generalized Variation. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 611-632. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a12/

[1] Michael E. A., “Continuous selections, I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[2] Kuratowski K., Ryll-Nardzewski C., “A general theorem on selectors”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13 (1965), 397–403 | MR | Zbl

[3] Choban M. M., “Mnogoznachnye otobrazheniya i borelevskie mnozhestva, I”, Tr. MMO, 22, URSS, M., 1970, 229–250 | MR | Zbl

[4] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977 | MR | Zbl

[5] Repovsh D., Semenov P. V., “Teoriya E. Maikla nepreryvnykh selektsii. Razvitie i prilozheniya”, UMN, 49:6 (1994), 151–190 | MR | Zbl

[6] Hermes H., “Existence and properties of solutions of $\dot x\in R(t,x)$”, Stud. in Appl. Math., 5, SIAM Publications, 1969, 188–193

[7] Hermes H., “On continuous and measurable selections and the existence of solutions of generalized differential equations”, Proc. Amer. Math. Soc., 29:3 (1971), 535–542 | DOI | MR

[8] Kikuchi N., Tomita Y., “On the absolute continuity of multifunctions and orientor fields”, Funkcial. Ekvac., 14:3 (1971), 161–170 | MR | Zbl

[9] Zhu Qiji, “Single-valued representation of absolutely continuous set-valued mappings”, Kexue Tongbao, 31:7 (1986), 443–446 | MR | Zbl

[10] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | Zbl

[11] Chistyakov V. V., “On mappings of bounded variation”, J. Dynam. Control Systems, 3:2 (1997), 261–289 | DOI | MR | Zbl

[12] Chistyakov V. V., “K teorii mnogoznachnykh otobrazhenii ogranichennoi variatsii odnoi veschestvennoi peremennoi”, Matem. sb., 189:5 (1998), 153–176 | MR | Zbl

[13] Chistyakov V. V., “Ob otobrazheniyakh ogranichennoi variatsii so znacheniyami v metricheskom prostranstve”, UMN, 54:3 (1999), 189–190 | MR | Zbl

[14] Chistyakov V. V., “Otobrazheniya ogranichennoi variatsii so znacheniyami v metricheskom prostranstve: obobscheniya”, Trudy mezhdunarodnoi konfererentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina. Ch. 2. Negladkii analiz i optimizatsiya, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozh., 61, VINITI, M., 1999, 167–189

[15] Chistyakov V. V., “Generalized variation of mappings with applications to composition operators and multifunctions”, Positivity, 5:4 (2001), 323–358 | DOI | MR | Zbl

[16] Ślȩzak W. A., “Concerning continuous selectors for multifunctions with nonconvex values”, Zeszyty Nauk. WSP Bydgoszcz. Problemy Matematyczne, 9 (1987), 85–104

[17] Belov S. A., Chistyakov V. V., “A selection principle for mappings of bounded variation”, J. Math. Anal. Appl., 249:2 (2000), 351–366 | DOI | MR | Zbl

[18] Chistyakov V. V., “Generalized variation of mappings and applications”, Real Anal. Exchange, 25:1 (1999–2000), 61–64

[19] Maligranda L., Orlicz Spaces and Interpolation, Seminars in Math., 5, Univ. of Campinas, IMECC-UNICAMP, Brasil, 1989 | Zbl

[20] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958

[21] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974

[22] Shvarts L., Analiz, T. 1, Mir, M., 1972

[23] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[24] Medvedev Yu. T., “Obobschenie odnoi teoremy F. Rissa”, UMN, 8:6 (1953), 115–118 | MR | Zbl

[25] Cybertowicz Z., Matuszewska W., “Functions of bounded generalized variations”, Comment. Math. Prace Mat., 20 (1977), 29–52 | MR | Zbl

[26] Maligranda L., Orlicz W., “On some properties of functions of generalized variation”, Monatsh. Math., 104 (1987), 53–65 | DOI | MR | Zbl

[27] Komura Y., “Differentiability of nonlinear semi-groups”, J. Math. Soc. Japan, 21 (1969), 375–402 | MR | Zbl

[28] Helly E., “Über lineare Funktionaloperationen”, Sitzungsberichte der Naturwiss. Klasse. Kais. Akad. Wiss. (Wien), 121 (1912), 265–297

[29] Kupka I., “Continuous multifunction from $[-1,0]$ to $\mathbb R$ having no continuous selection”, Publ. Math. Debrecen, 48:3–4 (1996), 367–370 | MR

[30] Chistyakov V. V., Galkin O. E., “On maps of bounded $p$-variation with $p>1$”, Positivity, 2:1 (1998), 19–45 | DOI | MR | Zbl

[31] Guric̆an J., Kostyrko P., “On Lipschitz selections of Lipschitz multifunctions”, Acta Math. Univ. Comenian, 46/47 (1985), 131–135 | MR | Zbl

[32] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969

[33] Hasumi M., “A continuous selection theorem for compact-valued maps”, Math. Ann., 179 (1969), 83–89 | DOI | MR | Zbl

[34] Graf S., “A measurable selection theorem for compact-valued maps”, Manuscripta Math., 27 (1979), 341–352 | DOI | MR | Zbl

[35] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988