On Finite Groups with Restrictions on Centralizers
Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 483-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $w(n)$ the number of factors in a representation of a positive integer $n$ as a product of primes. If $H$ is a subgroup of a finite group $G$, then we set $w(H)=w(|H|)$ and $v(G)=\max \{w(C(g))\mid g\in G\setminus Z(G)\}$. In the present paper we present the complete description of groups with nontrivial center that satisfy the condition $v(G)=4$.
@article{MZM_2002_71_4_a0,
     author = {V. A. Antonov and I. A. Tyurina and A. P. Cheskidov},
     title = {On {Finite} {Groups} with {Restrictions} on {Centralizers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--495},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - I. A. Tyurina
AU  - A. P. Cheskidov
TI  - On Finite Groups with Restrictions on Centralizers
JO  - Matematičeskie zametki
PY  - 2002
SP  - 483
EP  - 495
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a0/
LA  - ru
ID  - MZM_2002_71_4_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%A I. A. Tyurina
%A A. P. Cheskidov
%T On Finite Groups with Restrictions on Centralizers
%J Matematičeskie zametki
%D 2002
%P 483-495
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a0/
%G ru
%F MZM_2002_71_4_a0
V. A. Antonov; I. A. Tyurina; A. P. Cheskidov. On Finite Groups with Restrictions on Centralizers. Matematičeskie zametki, Tome 71 (2002) no. 4, pp. 483-495. http://geodesic.mathdoc.fr/item/MZM_2002_71_4_a0/

[1] Bianchi M., Manz O., “Groups with small centralizers of non-central elements”, Boll. Un. Mat. Ital. Ser. A, 4:7 (1990), 365–370 | MR | Zbl

[2] Scarselli A., “Gruppi con piccoli centralizzanti”, Boll. Un. Mat. Ital., 6-B:7 (1992), 649–663 | MR | Zbl

[3] Antonov V. A., Tyurina I. A., Cheskidov A. P., “Gruppy s malymi tsentralizatorami”, Matem. zametki, 69:5 (2001), 643–655 | MR | Zbl

[4] Schmidt R., “Zentralisatorverbände endlicher Gruppen”, Rend. Sem. Math. Univ. Padova, 1970, no. 44, 97–131 | MR

[5] Hall Ph., “The classification of prime-power groups”, J. Reine Angew. Math., 182 (1940), 130–141 | MR | Zbl

[6] Rocke D. M., “$p$-groups with abelian centralizers”, Proc. London Math. Soc. (3), 30:1 (1975), 55–75 | DOI | MR | Zbl

[7] Antonov V. A., “Konechnye gruppy s modulyarnoi reshetkoi tsentralizatorov”, Algebra i logika, 26:6 (1987), 653–683 | MR

[8] Verardi L., “On groups whose noncentral elements have the same finite number of conjugates”, Boll. Un. Mat. Ital. Ser. A, 3 (1988), 391–400 | MR | Zbl

[9] Huppert B., Endliche Gruppen, V. 1, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | Zbl

[10] Gagen T. M., “Nekotorye voprosy teorii konechnykh grupp”, K teorii konechnykh grupp, Mir, M., 1979