Rewriting Systems and the Complete Growth Series for Triangular Coxeter Groups
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 431-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a complete finite rewriting system is constructed for Coxeter groups of the form $$ W=\langle a,b,c\mid a^2=b^2=c^2=(ab)^p=(bc)^q=(ca)^r=1\rangle $$ with respect to the system of generators $S=\{a,b,c\}$, where $p,q,r\in \mathbb Z$, $p,q,r\ge 2$ and $1/p+1/q+1/r1$. Rewriting systems of this kind can be used to evaluate the complete growth series of a group.
@article{MZM_2002_71_3_a8,
     author = {M. D. Mamaghani},
     title = {Rewriting {Systems} and the {Complete} {Growth} {Series} for {Triangular} {Coxeter} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {431--439},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a8/}
}
TY  - JOUR
AU  - M. D. Mamaghani
TI  - Rewriting Systems and the Complete Growth Series for Triangular Coxeter Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 431
EP  - 439
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a8/
LA  - ru
ID  - MZM_2002_71_3_a8
ER  - 
%0 Journal Article
%A M. D. Mamaghani
%T Rewriting Systems and the Complete Growth Series for Triangular Coxeter Groups
%J Matematičeskie zametki
%D 2002
%P 431-439
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a8/
%G ru
%F MZM_2002_71_3_a8
M. D. Mamaghani. Rewriting Systems and the Complete Growth Series for Triangular Coxeter Groups. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 431-439. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a8/

[1] Coxeter H. S. M., Moser W. O. J., Generators and Relations for Discrete Groups, Reprint of 4th ed., Springer-Verlag, New York, 1984 | Zbl

[2] Vinberg E. B., “Groups defined by periodic paired relations”, Sb. Math., 188:9 (1997), 1269–1278 | DOI | MR | Zbl

[3] Tits J., “Le probléme des mots dans les groupes de Coxeter”, Symp. Math., 1 (1968), 175–185

[4] Grigorchuk R. I., Nagnibeda T., “Complete growth functions of hyperbolic groups”, Inv. Math., 130 (1997), 159–188 | DOI | MR | Zbl

[5] Grigorchuk R. I., “Funktsii rosta, perepisyvayuschie sistemy i eilerova kharakteristika”, Matem. zametki, 58:5 (1995), 653–668 | MR | Zbl

[6] Mamaghani M. J., Rewriting Systems and Growth of Groups, Ph. D. dissertation, Sharif University of Technology. Department of Mathematical Sciences, Shahrivar 1374, In Farsi

[7] Brown K. S., “The geometry of rewriting systems: A proof of the Anick–Groves–Squier theorem”, Algorithms and Classification in Combinatorial Group Theory, Lect. Workshop (Berkeley, C.A., 1989), Math. Sci. Res. Inst., 23, Springer-Verlag, New York, 1992, 137–163

[8] Mamagani M. Dzh., “O funktsiyakh rosta grupp poverkhnostei”, Matem. zametki, 58:5 (1995), 681–693 | MR | Zbl

[9] Cohen D. E., “String rewriting – a survey for group theorists”, LMS Lecture Notes Ser., 181, Cambridge Univ. Press, Cambridge, 1993, 37–47 | Zbl

[10] Hermiller S. M., “Rewriting systems for Coxeter groups”, J. Pure Appl. Algebra, 92 (1994), 137–148 | DOI | MR | Zbl

[11] Bourbaki N., Groupes et algèbres de Lie, Ch. 4–6, Hermann, Paris, 1968

[12] Paris L., “Growth series of Coxeter groups”, Group Theory from Geometrical Viewpoint, eds. E. Ghys, A. Haefliger, A. Verjovsky, World Scientific, Singapore, 1991

[13] Changey N., Rationalité des séries de croissance complète des groupes de Coxeter, Preprint, Université de Dijon, 1997