On the Similarity of $J$-Self-Adjoint Differential Operators of Odd Order to Normal Operators
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 476-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2002_71_3_a13,
     author = {I. M. Karabash},
     title = {On the {Similarity} of $J${-Self-Adjoint} {Differential} {Operators} of {Odd} {Order} to {Normal} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {476--480},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a13/}
}
TY  - JOUR
AU  - I. M. Karabash
TI  - On the Similarity of $J$-Self-Adjoint Differential Operators of Odd Order to Normal Operators
JO  - Matematičeskie zametki
PY  - 2002
SP  - 476
EP  - 480
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a13/
LA  - ru
ID  - MZM_2002_71_3_a13
ER  - 
%0 Journal Article
%A I. M. Karabash
%T On the Similarity of $J$-Self-Adjoint Differential Operators of Odd Order to Normal Operators
%J Matematičeskie zametki
%D 2002
%P 476-480
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a13/
%G ru
%F MZM_2002_71_3_a13
I. M. Karabash. On the Similarity of $J$-Self-Adjoint Differential Operators of Odd Order to Normal Operators. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 476-480. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a13/

[1] Berezanskii Yu. M., Us G. F., Sheftel Z. G., Funktsionalnyi analiz, Vysshaya shkola, Kiev, 1990 | Zbl

[2] Ćurgus B., Najman B., Oper. Theory Adv. Appl., 87, Birkhäuser, Basel, 1996, 95–104 | MR | Zbl

[3] Karabash I. M., Methods of Functional Analysis and Topology, 6:2 (2000), 22–49 | MR | Zbl

[4] Karabash I. M., Matem. zametki, 68:6 (2000), 943–944 | MR | Zbl

[5] Ćurgus B., Najman B., Oper. Theory Adv. Appl., 106, Birkhäuser, Basel, 1998, 113–130 | MR

[6] Pyatkov S. G., Sib. matem. zh., 30:4 (1989), 111–124 | MR | Zbl

[7] Karabash I. M., Spectral and Evolutionary Problems, Proc. of the Tenth Crimean Autumn Math. School–Symposium, 10, Simferopol, 2000, 22–25

[8] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, T. II, Vysshaya shkola, Kharkov, 1978

[9] Derkach V. A., Malamud M. M., J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl