On Analogs of the Tits Alternative for Groups of Homeomorphisms of the Circle and of the Line
Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 334-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1] G. Margulis proved Ghys's conjecture stating the validity of the following analog of the Tits alternative: either the group $G\subseteq \operatorname {Homeo}(S^1)$ of homeomorphisms of the circle possesses a free subgroup with two generators or there is an invariant probabilistic measure on $S^1$. In the present paper, we prove the following strengthening of Margulis's statement: an invariant probabilistic measure for a group $G\subseteq \operatorname {Homeo}(S^1)$ exists if and only if the quotient group $G/H_G$ does not contain a free subgroup with two generators (here $H_G$ is some specific subgroup of $G$ defined in a canonical way). We also formulate and prove analogs of the Tits alternative for groups $G\subseteq \operatorname {Homeo}(\mathbb R)$ of homeomorphisms of the line.
@article{MZM_2002_71_3_a1,
     author = {L. A. Beklaryan},
     title = {On {Analogs} of the {Tits} {Alternative} for {Groups} of {Homeomorphisms} of the {Circle} and of the {Line}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--347},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a1/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - On Analogs of the Tits Alternative for Groups of Homeomorphisms of the Circle and of the Line
JO  - Matematičeskie zametki
PY  - 2002
SP  - 334
EP  - 347
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a1/
LA  - ru
ID  - MZM_2002_71_3_a1
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T On Analogs of the Tits Alternative for Groups of Homeomorphisms of the Circle and of the Line
%J Matematičeskie zametki
%D 2002
%P 334-347
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a1/
%G ru
%F MZM_2002_71_3_a1
L. A. Beklaryan. On Analogs of the Tits Alternative for Groups of Homeomorphisms of the Circle and of the Line. Matematičeskie zametki, Tome 71 (2002) no. 3, pp. 334-347. http://geodesic.mathdoc.fr/item/MZM_2002_71_3_a1/

[1] Margulis G., “Free subgroups of the homeomorphism group of the circle”, C.R. Acad. Sci. Paris. Ser. I, 331 (2000), 669–674 | MR | Zbl

[2] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. III: $\omega$-proektivno-invariantnye mery”, Matem. sb., 190:4 (1999), 43–62 | MR | Zbl

[3] Solodov V. V., “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl

[4] Solodov V. V., “Gomeomorfizmy pryamoi i sloeniya”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 1047–1060 | MR

[5] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II: Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | MR | Zbl

[6] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I: Invariantnye mery”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl

[7] Beklaryan L. A., “Struktura faktorgruppy gruppy gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, po podgruppe, porozhdennoi ob'edineniem stabilizatorov”, Dokl. RAN, 331:2 (1993), 137–139 | Zbl