Uniform Continuity of Generalized Rational Approximations
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 261-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that there are no uniformly continuous multiplicative $\varepsilon$-selections from $C[0,1]$ on the set of generalized rational fractions of sufficiently general form for small $\varepsilon$.
@article{MZM_2002_71_2_a9,
     author = {C. S. Rjutin},
     title = {Uniform {Continuity} of {Generalized} {Rational} {Approximations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/}
}
TY  - JOUR
AU  - C. S. Rjutin
TI  - Uniform Continuity of Generalized Rational Approximations
JO  - Matematičeskie zametki
PY  - 2002
SP  - 261
EP  - 270
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/
LA  - ru
ID  - MZM_2002_71_2_a9
ER  - 
%0 Journal Article
%A C. S. Rjutin
%T Uniform Continuity of Generalized Rational Approximations
%J Matematičeskie zametki
%D 2002
%P 261-270
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/
%G ru
%F MZM_2002_71_2_a9
C. S. Rjutin. Uniform Continuity of Generalized Rational Approximations. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 261-270. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/

[1] Konyagin S. V., “O nepreryvnosti operatorov obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[2] Tsarkov I. G., “Svoistva mnozhestv, obladayuschikh nepreryvnoi vyborkoi iz operatora $P^\delta$”, Matem. zametki, 48:4 (1990), 122–131 | MR | Zbl

[3] Albrekht P. V., “Poryadki modulei nepreryvnosti operatorov pochti nailuchshego priblizheniya”, Matem. sb., 185:9 (1994), 3–28

[4] Marinov A. V., “Otsenki ustoichivosti nepreryvnoi selektsii dlya metricheskoi pochti-proektsii”, Matem. zametki, 55:4 (1994), 47–53 | MR | Zbl

[5] Konyagin S. V., “O ravnomernoi nepreryvnosti operatorov ratsionalnogo priblizheniya”, Teoriya priblizhenii i zadachi vychislitelnoi matematiki, Tezisy dokladov, Dnepropetrovsk, 1993, 108

[6] Ryutin K. S., “Lipshitsevost retraktsii i operator obobschennogo ratsionalnogo priblizheniya”, Fundament. i prikl. matem., 6:4 (2000), 1205–1220 | MR | Zbl