Uniform Continuity of Generalized Rational Approximations
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 261-270
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, it is shown that there are no uniformly continuous multiplicative $\varepsilon$-selections from $C[0,1]$ on the set of generalized rational fractions of sufficiently general form for small $\varepsilon$.
@article{MZM_2002_71_2_a9,
author = {C. S. Rjutin},
title = {Uniform {Continuity} of {Generalized} {Rational} {Approximations}},
journal = {Matemati\v{c}eskie zametki},
pages = {261--270},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/}
}
C. S. Rjutin. Uniform Continuity of Generalized Rational Approximations. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 261-270. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a9/