Morse--Smale Vector Fields without Closed Trajectories on 3-Manifolds
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 254-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Morse–Smale vector fields on 3-manifolds. A topological classification of such vector fields in terms of homeomorphisms of surfaces with two sets of circles on them is given. An algorithm verifying the existence of such homeomorphisms is constructed.
@article{MZM_2002_71_2_a8,
     author = {A. O. Prishlyak},
     title = {Morse--Smale {Vector} {Fields} without {Closed} {Trajectories} on {3-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {254--260},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/}
}
TY  - JOUR
AU  - A. O. Prishlyak
TI  - Morse--Smale Vector Fields without Closed Trajectories on 3-Manifolds
JO  - Matematičeskie zametki
PY  - 2002
SP  - 254
EP  - 260
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/
LA  - ru
ID  - MZM_2002_71_2_a8
ER  - 
%0 Journal Article
%A A. O. Prishlyak
%T Morse--Smale Vector Fields without Closed Trajectories on 3-Manifolds
%J Matematičeskie zametki
%D 2002
%P 254-260
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/
%G ru
%F MZM_2002_71_2_a8
A. O. Prishlyak. Morse--Smale Vector Fields without Closed Trajectories on 3-Manifolds. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 254-260. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/

[1] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl

[2] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986

[3] Fleitas G., “Classification of gradient like flows of dimensions two and three”, Bol. Soc. Brasil. Mat., 9 (1975), 155–183 | DOI | MR

[4] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical Systems, ed. M. Peixoto, Acad. Press, 1973, 389–419 | MR

[5] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, MGU, M., 1991

[6] Zieshang H., “On Heegaard diagrams of $3$-manifolds”, Asterisque, 163/164, 1988, 247–280