Morse–Smale Vector Fields without Closed Trajectories on 3-Manifolds
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 254-260
Cet article a éte moissonné depuis la source Math-Net.Ru
We study Morse–Smale vector fields on 3-manifolds. A topological classification of such vector fields in terms of homeomorphisms of surfaces with two sets of circles on them is given. An algorithm verifying the existence of such homeomorphisms is constructed.
@article{MZM_2002_71_2_a8,
author = {A. O. Prishlyak},
title = {Morse{\textendash}Smale {Vector} {Fields} without {Closed} {Trajectories} on {3-Manifolds}},
journal = {Matemati\v{c}eskie zametki},
pages = {254--260},
year = {2002},
volume = {71},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/}
}
A. O. Prishlyak. Morse–Smale Vector Fields without Closed Trajectories on 3-Manifolds. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 254-260. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a8/
[1] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl
[2] Palis Zh., di Melu V., Geometricheskaya teoriya dinamicheskikh sistem. Vvedenie, Mir, M., 1986
[3] Fleitas G., “Classification of gradient like flows of dimensions two and three”, Bol. Soc. Brasil. Mat., 9 (1975), 155–183 | DOI | MR
[4] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical Systems, ed. M. Peixoto, Acad. Press, 1973, 389–419 | MR
[5] Matveev S. V., Fomenko A. T., Algoritmicheskie i kompyuternye metody v trekhmernoi topologii, MGU, M., 1991
[6] Zieshang H., “On Heegaard diagrams of $3$-manifolds”, Asterisque, 163/164, 1988, 247–280