Extremes of Subexponential Shot Noise
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 227-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic behavior of extremes of shot noise in the case of monotone response functions with unbounded support and subexponentially distributed amplitudes is considered. It is assumed that the amplitude distribution belongs to the domain of attraction of a certain maximum-stable law. The limit distribution for maxima is obtained.
@article{MZM_2002_71_2_a5,
     author = {A. V. Lebedev},
     title = {Extremes of {Subexponential} {Shot} {Noise}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {227--231},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a5/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Extremes of Subexponential Shot Noise
JO  - Matematičeskie zametki
PY  - 2002
SP  - 227
EP  - 231
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a5/
LA  - ru
ID  - MZM_2002_71_2_a5
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Extremes of Subexponential Shot Noise
%J Matematičeskie zametki
%D 2002
%P 227-231
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a5/
%G ru
%F MZM_2002_71_2_a5
A. V. Lebedev. Extremes of Subexponential Shot Noise. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 227-231. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a5/

[1] Campbell N. R., “The study of discontinuous phenomena”, Proc. Cambridge Phil. Soc., 15:1 (1909), 117–136

[2] Rais S., “Teoriya fluktuatsionnykh shumov”, Teoriya peredachi elektricheskikh signalov pri nalichii pomekh, IL, M., 1953, 88–238

[3] McCormick W. P., “Extremes for shot noise processes with heavy tailed amplitudes”, J. Appl. Probab., 34:3 (1997), 643–656 | DOI | MR | Zbl

[4] Doney R. A., O'Brien G. L., “Loud shot noise”, Ann. Appl. Probab., 1:1 (1991), 88–103 | DOI | MR | Zbl

[5] Chistyakov V. P., “Teorema o summakh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teoriya veroyatn. i ee primen., 9:4 (1964), 710–718 | MR | Zbl

[6] Goldie C. M., Klüppelberg C., “Subexponential distributions”, A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions, eds. R. Adler, R. Feldman, M. S. Taqqu, Birkhäuser, Boston, 1998, 435–459 | MR | Zbl

[7] Kalashnikov V. V., Tsitsiashvili G. Sh., “Dvustoronnie otsenki sluchainykh summ s subeksponentsialnymi slagaemymi”, Probl. peredachi informatsii, 35:3 (1999), 67–79 | MR | Zbl

[8] Yakymiv A. L., “Yavnye otsenki dlya asimptotiki subeksponentsialnykh bezgranichno delimykh funktsii raspredeleniya”, Matem. zametki, 67:2 (2000), 295–301 | MR | Zbl

[9] Gnedenko B. V., “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. Math., 44:3 (1943), 423–453 | DOI | MR | Zbl

[10] Lidbetter M., Rotsen Kh., Lindgren G., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989

[11] Esary J., Prochan F., Walkup D., “Association of random variables with applications”, Ann. Math. Stat., 38:5 (1967), 1466–1474 | DOI | MR | Zbl

[12] Bakhtin Yu. Yu., “Zakon povtornogo logarifma dlya resheniya uravneniya Byurgersa so sluchainymi nachalnymi dannymi”, Matem. zametki, 64:6 (1998), 812–823 | MR | Zbl