Increasing Monotone Operators in Banach Space
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 214-226

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator $A$ mapping a separable reflexive Banach space $X$ into the dual space $X'$ is called increasing if $\|Au\|\to \infty$ as $\|u\|\to \infty$. Necessary and sufficient conditions for the superposition operators to be increasing are obtained. The relationship between the increasing and coercive properties of monotone partial differential operators is studied. Additional conditions are imposed that imply the existence of a solution for the equation $Au=f$ with an increasing operator $A$.
@article{MZM_2002_71_2_a4,
     author = {G. I. Laptev},
     title = {Increasing {Monotone} {Operators} in {Banach} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--226},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a4/}
}
TY  - JOUR
AU  - G. I. Laptev
TI  - Increasing Monotone Operators in Banach Space
JO  - Matematičeskie zametki
PY  - 2002
SP  - 214
EP  - 226
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a4/
LA  - ru
ID  - MZM_2002_71_2_a4
ER  - 
%0 Journal Article
%A G. I. Laptev
%T Increasing Monotone Operators in Banach Space
%J Matematičeskie zametki
%D 2002
%P 214-226
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a4/
%G ru
%F MZM_2002_71_2_a4
G. I. Laptev. Increasing Monotone Operators in Banach Space. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 214-226. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a4/