Strongly Exposed Points of Decomposable Sets in Spaces of Bochner Integrable Functions
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 298-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

A characterization of strongly exposed points of a decomposable bounded closed convex set $\Gamma \subset L_p(T,X)$, where $1\le p\infty $, in terms of strongly exposed points of values of the set-valued representation $F\ :T\to 2^X$ of $\Gamma$ is given. As a corollary, necessary conditions characterizing strongly exposed points of the unit ball in $L_p(T,X)$, where $1\le p\infty $, in terms of strongly exposed points of the unit ball in $X$ are obtained.
@article{MZM_2002_71_2_a12,
     author = {A. A. Tolstonogov},
     title = {Strongly {Exposed} {Points} of {Decomposable} {Sets} in {Spaces} of {Bochner} {Integrable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {298--306},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a12/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Strongly Exposed Points of Decomposable Sets in Spaces of Bochner Integrable Functions
JO  - Matematičeskie zametki
PY  - 2002
SP  - 298
EP  - 306
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a12/
LA  - ru
ID  - MZM_2002_71_2_a12
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Strongly Exposed Points of Decomposable Sets in Spaces of Bochner Integrable Functions
%J Matematičeskie zametki
%D 2002
%P 298-306
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a12/
%G ru
%F MZM_2002_71_2_a12
A. A. Tolstonogov. Strongly Exposed Points of Decomposable Sets in Spaces of Bochner Integrable Functions. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 298-306. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a12/

[1] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer, Berlin, 1977 | MR | Zbl

[2] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[3] Benabdellah H., “Denting points in Bochner Banach ideal spaces $X(E)$”, J. Convex Analysis, 6 (1999), 183–194 | MR | Zbl

[4] Suslov S. I., “Kharakterizatsiya silno vystupayuschikh tochek v $L_1(T,X)$”, Sib. matem. zh., 41:3 (2000), 692–695 | MR | Zbl

[5] Bourgin R. D., Geometric Aspects of Convex Sets with the Radon–Nikodym Property, Lecture Notes in Math., 993, Springer, Berlin, 1983 | MR | Zbl

[6] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[7] Hiai F., Umegaki H., “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[8] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[9] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968

[10] Michael E., “Continuous selections, I”, Ann. Math., 63 (1956), 361–382 | DOI | MR | Zbl

[11] Levin V. L., “Izmerimye secheniya mnogoznachnykh otobrazhenii i proektsii izmerimykh mnozhestv”, Funktsion. analiz i ego prilozh., 12:2 (1978), 40–45 | MR | Zbl

[12] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | Zbl

[13] Greim P., “Strongly exposed points in Bochner $L^p$-spaces”, Proc. Amer. Math. Soc., 88 (1983), 81–84 | DOI | MR | Zbl

[14] Zhibao Hu, Bor-Luh Lin, “Strongly exposed points in Lebesgue–Bochner function spaces”, Proc. Amer. Math. Soc., 120 (1994), 1159–1165 | DOI | MR

[15] Hensgen W., “Exposed points in Lebesgue–Bochner and Hardy–Bochner Spaces”, J. Math. Anal. Appl., 198 (1996), 780–795 | DOI | MR | Zbl

[16] Tolstonogov A. A., Tolstonogov D. A., “$L_p$-continuous extreme selectors of multifunctions with decomposable values: relaxation theorems”, Set-Valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl