Stability Zones in Whitney's Extension Problem for Ultradifferentiable Functions
Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 163-167
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish a connection between the growth rate of weight functions $\omega$ generating nonquasianalytic classes of ultradifferentiable functions of Beurling and Roumieu type and the validity of an analog of Whitney's extension theorem for these classes.
@article{MZM_2002_71_2_a0,
author = {D. A. Abanin},
title = {Stability {Zones} in {Whitney's} {Extension} {Problem} for {Ultradifferentiable} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--167},
year = {2002},
volume = {71},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a0/}
}
D. A. Abanin. Stability Zones in Whitney's Extension Problem for Ultradifferentiable Functions. Matematičeskie zametki, Tome 71 (2002) no. 2, pp. 163-167. http://geodesic.mathdoc.fr/item/MZM_2002_71_2_a0/
[1] Brown R. W., Meise R., Taylor B. A., “Ultradifferentiable functions and Fourier analysis”, Results Math., 17 (1990), 206–237 | MR
[2] Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26 (1988), 265–287 | DOI | MR | Zbl
[3] Bonet J., Meise R., Taylor B. A., “Whitney's extension theorem for ultradifferentiable functions of Roumieu type”, Proc. Royal Irish Acad., 89A (1989), 53–66 | MR
[4] Bonet J., Brown R. W., Meise R., Taylor B. A., “Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions”, Stud. Math., 99 (1991), 155–184 | MR | Zbl