Approximation of Classes of Periodic Functions in Several Variables
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the approximation of the classes $B_{p,\theta }^r$ and $W_{p,\alpha }^r$ of periodic functions of several variables by multiple Fourier sums of fixed order constructed with regard to individual properties of functions from these classes. In a number of cases, such approximations allow us to achieve a better degree of approximation of the classes indicated above as compared to their approximation by staircase hyperbolic Fourier sums.
@article{MZM_2002_71_1_a9,
     author = {A. S. Romanyuk},
     title = {Approximation of {Classes} of {Periodic} {Functions} in {Several} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a9/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Approximation of Classes of Periodic Functions in Several Variables
JO  - Matematičeskie zametki
PY  - 2002
SP  - 109
EP  - 121
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a9/
LA  - ru
ID  - MZM_2002_71_1_a9
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Approximation of Classes of Periodic Functions in Several Variables
%J Matematičeskie zametki
%D 2002
%P 109-121
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a9/
%G ru
%F MZM_2002_71_1_a9
A. S. Romanyuk. Approximation of Classes of Periodic Functions in Several Variables. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a9/