Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive several sufficient conditions for the uniform approximability of functions by polynomial solutions of homogeneous elliptic equations of second order with constant coefficients on Carathéodory compact sets in $\mathbb R^2$.
@article{MZM_2002_71_1_a6,
     author = {A. B. Zaitsev},
     title = {Uniform {Approximability} of {Functions} by {Polynomials} of {Special} {Classes} on {Compact} {Sets} in $\mathbb R^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/}
}
TY  - JOUR
AU  - A. B. Zaitsev
TI  - Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$
JO  - Matematičeskie zametki
PY  - 2002
SP  - 75
EP  - 87
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/
LA  - ru
ID  - MZM_2002_71_1_a6
ER  - 
%0 Journal Article
%A A. B. Zaitsev
%T Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$
%J Matematičeskie zametki
%D 2002
%P 75-87
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/
%G ru
%F MZM_2002_71_1_a6
A. B. Zaitsev. Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/

[1] Khermander L., Analiz lineinykh differentsialnykh operatorov, Mir, M., 1986

[2] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl

[3] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl

[4] O'Farrell A. G., “A generalized Walsh–Lebesgue theorem”, Proc. Roy. Soc. Edinburg. Sect. A, 73:1 (1975), 231–234 | MR | Zbl

[5] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl

[6] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl

[7] Verchota G. C, Vogel A. L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl

[8] Bishop E., “Struktura nekotorykh mer”, Nekotorye voprosy teorii priblizhenii, Sb., ed. A. A. Gonchar, IL, M., 1963, 74–86

[9] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, Sb., ed. A. A. Gonchar, IL, M., 1963, 87–100

[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966

[11] Karateodori K., Konformnoe otobrazhenie, Gostekhizdat, M.–L., 1934

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977

[13] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976