Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2002_71_1_a6, author = {A. B. Zaitsev}, title = {Uniform {Approximability} of {Functions} by {Polynomials} of {Special} {Classes} on {Compact} {Sets} in $\mathbb R^2$}, journal = {Matemati\v{c}eskie zametki}, pages = {75--87}, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/} }
TY - JOUR AU - A. B. Zaitsev TI - Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$ JO - Matematičeskie zametki PY - 2002 SP - 75 EP - 87 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/ LA - ru ID - MZM_2002_71_1_a6 ER -
A. B. Zaitsev. Uniform Approximability of Functions by Polynomials of Special Classes on Compact Sets in $\mathbb R^2$. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 75-87. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a6/
[1] Khermander L., Analiz lineinykh differentsialnykh operatorov, Mir, M., 1986
[2] Paramonov P. V., “$C^m$-priblizheniya garmonicheskimi polinomami na kompaktnykh mnozhestvakh v $\mathbb R^n$”, Matem. sb., 184:2 (1993), 105–128 | Zbl
[3] Gamelin T., Ravnomernye algebry, Mir, M., 1973 | Zbl
[4] O'Farrell A. G., “A generalized Walsh–Lebesgue theorem”, Proc. Roy. Soc. Edinburg. Sect. A, 73:1 (1975), 231–234 | MR | Zbl
[5] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Matem. zametki, 59:4 (1996), 604–610 | MR | Zbl
[6] Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi i $C^1$-priblizhaemosti funktsii na kompaktakh v $\mathbb R^2$ resheniyami ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 190:2 (1999), 123–144 | MR | Zbl
[7] Verchota G. C, Vogel A. L., “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535 | DOI | MR | Zbl
[8] Bishop E., “Struktura nekotorykh mer”, Nekotorye voprosy teorii priblizhenii, Sb., ed. A. A. Gonchar, IL, M., 1963, 74–86
[9] Bishop E., “Granichnye mery analiticheskikh differentsialov”, Nekotorye voprosy teorii priblizhenii, Sb., ed. A. A. Gonchar, IL, M., 1963, 87–100
[10] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966
[11] Karateodori K., Konformnoe otobrazhenie, Gostekhizdat, M.–L., 1934
[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Funktsionalnyi analiz, Mir, M., 1977
[13] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950
[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976