Relatively Closed Operators Associated to a Pair of Grassmannians
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relatively closed operators naturally arise in integral geometry when we look for local inversion formulas. In the present paper, we construct families of relatively closed operators for integral transformations associated to pairs of real Grassmannians. As a result, we obtain a description of all local inversion formulas for these transformations.
@article{MZM_2002_71_1_a5,
     author = {M. I. Graev},
     title = {Relatively {Closed} {Operators} {Associated} to a {Pair} of {Grassmannians}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a5/}
}
TY  - JOUR
AU  - M. I. Graev
TI  - Relatively Closed Operators Associated to a Pair of Grassmannians
JO  - Matematičeskie zametki
PY  - 2002
SP  - 61
EP  - 74
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a5/
LA  - ru
ID  - MZM_2002_71_1_a5
ER  - 
%0 Journal Article
%A M. I. Graev
%T Relatively Closed Operators Associated to a Pair of Grassmannians
%J Matematičeskie zametki
%D 2002
%P 61-74
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a5/
%G ru
%F MZM_2002_71_1_a5
M. I. Graev. Relatively Closed Operators Associated to a Pair of Grassmannians. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a5/

[1] Gelfand I. M., Gindikin S. G., Graev M. I., “Integralnaya geometriya v affinnom i proektivnom prostranstvakh”, Itogi nauki i tekhniki. Sovrem. probl. matem., 16, VINITI, M., 1980, 53–226

[2] Gelfand I. M., Gindikin S. G., Graev M. I., Izbrannye zadachi integralnoi geometrii, Dobrosvet, M., 2000 | Zbl

[3] Gelfand I. M., Graev M. I., Opisanie vsekh formul obrascheniya v zadache integralnoi geometrii, svyazannoi s grassmanianom $G_{k,n}$, Preprint in-ta prikl. matematiki AN SSSR, No 102, 1986, s. 1–27 | MR

[4] Graev M., Intermediate inversion formulas in integral geometry, Preprint ESI, No 630, 1998, p. 1–14 | MR

[5] Graev M. I., “Zadacha integralnoi geometrii, svyazannaya s troikoi grassmanovykh mnogoobrazii”, Funktsion. analiz i ego prilozh., 34:4 (2000), 78–81 | MR | Zbl

[6] Gelfand I. M., Graev M. I., Shapiro Z. Ya., “Zadacha integralnoi geometrii, svyazannaya s paroi grassmanovykh mnogoobrazii”, Dokl. AN SSSR, 193:2 (1970), 259–262 | MR | Zbl

[7] Gelfand I. M., Graev M. I., Shapiro Z. Ya., “Integralnaya geometriya v proektivnom prostranstve”, Funktsion. analiz i ego prilozh., 4:1 (1970), 14–32 | MR | Zbl