$\omega$-Fibered Formations and Fitting Classes of Finite Groups
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 43-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we suggest a new functional approach to the study of group classes which enables us to describe all formations and Fitting classes of finite groups in the language of functions. The notions of $\omega$-fibered formation and of $\omega$-fibered Fitting class with direction $\varphi$ are introduced. A direction $\varphi$ is defined as a mapping of the set $\mathbb P$ of all primes into the set of all nonempty Fitting formations. The existence of infinitely many mappings of this kind makes it possible to construct new forms of formations and Fitting classes for a given nonempty set $\omega$. In particular, an $\omega$-local formation is an $\omega$-fibered formation with a direction $\varphi$ such that $\varphi (p)=\mathfrak G_{p'}\mathfrak N_p$ for any prime $p$. In the paper we study some basic properties of $\omega$-fibered formations and of $\omega$-fibered Fitting classes with direction $\varphi$ and obtain the structure of their minimal satellites for a given $\varphi$.
@article{MZM_2002_71_1_a4,
     author = {V. A. Vedernikov and M. M. Sorokina},
     title = {$\omega${-Fibered} {Formations} and {Fitting} {Classes} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a4/}
}
TY  - JOUR
AU  - V. A. Vedernikov
AU  - M. M. Sorokina
TI  - $\omega$-Fibered Formations and Fitting Classes of Finite Groups
JO  - Matematičeskie zametki
PY  - 2002
SP  - 43
EP  - 60
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a4/
LA  - ru
ID  - MZM_2002_71_1_a4
ER  - 
%0 Journal Article
%A V. A. Vedernikov
%A M. M. Sorokina
%T $\omega$-Fibered Formations and Fitting Classes of Finite Groups
%J Matematičeskie zametki
%D 2002
%P 43-60
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a4/
%G ru
%F MZM_2002_71_1_a4
V. A. Vedernikov; M. M. Sorokina. $\omega$-Fibered Formations and Fitting Classes of Finite Groups. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a4/

[1] Gaschutz W., “Zur Theorie der endlichen auflosbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR

[2] Hartley B., “On Fischer's dualization of formation theory”, Proc. London Math. Soc., 3:9 (1969), 193–207 | DOI | MR

[3] Shemetkov L. A., “Stupenchatye formatsii grupp”, Matem. sb., 94:4 (1974), 628–648 | MR | Zbl

[4] Shemetkov L. A., “O proizvedenii formatsii”, Dokl. AN BSSR, 28:2 (1984), 101–103 | MR | Zbl

[5] Skiba A. N., Shemetkov L. A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[6] Vedernikov V. A., Koptyukh D. G., Chastichno kompozitsionnye formatsii grupp, Preprint No. 2, BGPU, Bryansk, 1999, s. 1–28

[7] Skiba A. N., Shemetkov L. A., “Chastichno kompozitsionnye formatsii konechnykh grupp”, Dokl. NAN Belarusi, 43:4 (1999), 5–8 | MR | Zbl

[8] Vedernikov V. A., Sorokina M. M., $\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp, Preprint No. 5, BGPU, Bryansk, 1999, s. 1–25

[9] Borevich Z. I., “O raspolozhenii podgrupp”, Zapiski nauch. sem. LOMI, 94, Nauka, L., 1979, 5–12 | MR | Zbl

[10] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | Zbl

[11] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Nauka, M., 1989

[12] Shemetkov L. A., “Gashyutsovy proizvedeniya klassov grupp”, Dokl. NAN Belarusi, 42:3 (1998), 22–26 | MR | Zbl

[13] Vedernikov V. A., “Podpryamye proizvedeniya i formatsii konechnykh grupp”, Algebra i logika, 29:5 (1990), 523–548 | MR | Zbl

[14] Vedernikov V. A., Elementy teorii klassov grupp, SGPI, Smolensk, 1988