An Analog of the Krein–Mil'man Theorem for Strongly Convex Hulls in Hilbert Space
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 37-42
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the following theorem: in Hilbert space a closed bounded set is contained in the strongly convex $R$-hull of its $R$-strong extreme points. $R$-strong extreme points are a subset of the set of extreme points (it may happen that these two sets do not coincide); the strongly convex $R$-hull of a set contains the closure of the convex hull of the set.
@article{MZM_2002_71_1_a3,
author = {M. V. Balashov},
title = {An {Analog} of the {Krein{\textendash}Mil'man} {Theorem} for {Strongly} {Convex} {Hulls} in {Hilbert} {Space}},
journal = {Matemati\v{c}eskie zametki},
pages = {37--42},
year = {2002},
volume = {71},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a3/}
}
M. V. Balashov. An Analog of the Krein–Mil'man Theorem for Strongly Convex Hulls in Hilbert Space. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 37-42. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a3/
[1] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | MR | Zbl
[2] Balashov M. V., Polovinkin E. S., “$M$-silno vypuklye podmnozhestva i ikh porozhdayuschie mnozhestva”, Matem. sb., 191:1 (2000), 26–64 | MR
[3] Soltan V. P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984 | Zbl
[4] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988
[5] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979