Finitely Generated Submodules in the Module of Entire Functions Determined by Restrictions on the Indicator Function
Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

We study finitely generated submodules in the module $P$ of entire functions bounded by a system of $\rho$-trigonometrically convex weights majorized by a given $\rho$-trigonometrically convex function. Sufficient conditions for the ampleness of a finitely generated submodule in terms of the relative position of the zeros of its generators are obtained. Using these conditions, we prove that each ample submodule in $P$ is generated by two (possibly, coinciding) functions.
@article{MZM_2002_71_1_a0,
     author = {N. F. Abuzyarova},
     title = {Finitely {Generated} {Submodules} in the {Module} of {Entire} {Functions} {Determined} by {Restrictions} on the {Indicator} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Finitely Generated Submodules in the Module of Entire Functions Determined by Restrictions on the Indicator Function
JO  - Matematičeskie zametki
PY  - 2002
SP  - 3
EP  - 17
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a0/
LA  - ru
ID  - MZM_2002_71_1_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Finitely Generated Submodules in the Module of Entire Functions Determined by Restrictions on the Indicator Function
%J Matematičeskie zametki
%D 2002
%P 3-17
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a0/
%G ru
%F MZM_2002_71_1_a0
N. F. Abuzyarova. Finitely Generated Submodules in the Module of Entire Functions Determined by Restrictions on the Indicator Function. Matematičeskie zametki, Tome 71 (2002) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2002_71_1_a0/