Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_6_a9, author = {A. I. Khrabrov}, title = {Generalized {Volume} {Ratios} and the {Banach--Mazur} {Distance}}, journal = {Matemati\v{c}eskie zametki}, pages = {918--926}, publisher = {mathdoc}, volume = {70}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a9/} }
A. I. Khrabrov. Generalized Volume Ratios and the Banach--Mazur Distance. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 918-926. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a9/
[1] Macbeath A. M., “A compactness theorem for affine equivalence-classes of convex regions”, Canad. J. Math., 3:1 (1951), 54–61 | MR | Zbl
[2] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | Zbl
[3] Ball K., “Volumes of sections of cubes and related problems”, Geometric Aspects of Functional Analysis, 1987–1988, Lecture Notes in Math., 1376, Springer, Berlin–New York, 1989, 251–260
[4] Gordon Y., Meyer M., Pajor A., “Ratios of volumes and factorization through $\ell _\infty $”, Illinois J. Math., 40:1 (1996), 91–107 | MR | Zbl
[5] Gordon Y., Junge M., “Volume ratios in $L_p$-spaces”, Studia Math., 136:2 (1999), 147–182 | MR | Zbl
[6] Gurarii V. I., Kadets M. I., Matsaev V. I., “O rasstoyaniyakh mezhdu konechnomernymi analogami prostranstv $L^p$”, Matem. sb., 70(112):4 (1966), 481–489 | MR | Zbl
[7] Gluskin E. D., “Diametr kompakta Minkovskogo primerno raven $n$”, Funktsion. analiz i ego prilozh., 15:1 (1981), 72–73 | MR | Zbl
[8] Khrabrov A. I., “Otsenki rasstoyanii mezhdu summami prostranstv $\ell ^p_n$”, Vestn. SPbGU. Ser. 1, 3:15 (2000), 51–57 | MR
[9] Santaló L., “Un invariante afin para los cuerpos convexos del espacio de $n$ dimensiones”, Portugal Math., 8 (1949), 155–161 | MR | Zbl
[10] Pisier G., The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, Cambridge, 1989 | Zbl
[11] Bourgain J., Milman V., “New volume ratio properties for convex symmetric bodies in $\mathbb R^n$”, Invent. Math., 88:2 (1985), 319–340 | DOI | MR
[12] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. III, Nauka, M., 1970
[13] Tomczak-Jaegermann N., Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38, Longman Scientific Technical, Harlow–New York, 1989 | MR | Zbl
[14] Bárány I., Füredi Z., “Approximation of the sphere by polytopes having few vertices”, Proc. Amer. Math. Soc., 102:3 (1988), 651–659 | DOI | MR | Zbl
[15] Gluskin E. D., “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Matem. sb., 136 (178):1 (5) (1988), 85–96 | MR | Zbl
[16] Kashin B. S., “O parallelepipedakh naimenshego ob'ema, soderzhaschikh vypukloe telo”, Matem. zametki, 45:2 (1989), 134–135 | MR | Zbl
[17] Dvoretzky A., Rogers C. A., “Absolute and unconditional convergence in normed linear spaces”, Proc. Nat. Acad. Sci. USA, 36 (1950), 192–197 | DOI | MR | Zbl
[18] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961
[19] John F., “Extremum problems with inequalities as subsidiary conditions”, Courant Anniversary Volume, Interscience, New York, 1948, 187–204
[20] Szarek S. J., “On the geometry of the Banach–Mazur compactum”, Functional Analysis, 1987/1989 (Austin, TX), Lecture Notes in Math., 1470, Springer, Berlin, 1991, 48–59 | MR
[21] Giannopoulos A. A., “A note on the Banach–Mazur distance to the cube”, Geometric aspects of functional analysis (Israel, 1992–1994), Oper. Theory Adv. Appl., 77, 1995, 67–73 | Zbl
[22] Bourgain J., Milman V., “Distances between normed spaces, their subspaces and quotient spaces”, Integral Equations and Operators Theory, 9 (1986), 31–46 | DOI | MR | Zbl