$\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 909-917
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be the free product of two Abelian torsion-free groups, let $P\triangleleft A$ and $P\subseteq C$, where $C$ is the Cartesian subgroup of the group $A$, and let $\mathbb Z(A/P)$ contain no zero divisors. In the paper it is proved that, in this case, any automorphism of the group $A/P'$ is inner. This result generalized the well-known result of Bachmuth, Formanek, and Mochizuki on the automorphisms of groups of the form $F_2/R'$, $R\triangleleft F_2$, $R\subseteq F'_2$, where $F_2$ is a free group of rank two.
@article{MZM_2001_70_6_a8,
author = {P. V. Ushakov},
title = {$\operatorname{IA}${-Automorphisms} of {Free} {Products} of {Two} {Abelian} {Torsion-Free} {Groups}},
journal = {Matemati\v{c}eskie zametki},
pages = {909--917},
year = {2001},
volume = {70},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/}
}
P. V. Ushakov. $\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 909-917. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/
[1] Bachmuth S., Formanek E., Mochizuki H. Y., “$\operatorname {IA}$-automorphisms of certain two-generator torsion-free groups”, J. Algebra, 40 (1976), 19–30 | DOI | MR | Zbl
[2] Ushakov P. V., Ob avtomorfizmakh proizvedenii abelevykh grupp, Dep. VINITI RAN 23.12.99 No. 3802-V99, VINITI, M., 1999
[3] Shmelkin A. L., “O svobodnykh proizvedeniyakh grupp”, Matem. sb., 79 (121):4 (8) (1969), 616–620 | MR | Zbl
[4] Shmelkin A. L., “O nekotorykh faktorgruppakh svobodnogo proizvedeniya”, Tr. sem. im. I. G. Petrovskogo, no. 5, Izd-vo Mosk. un-ta, M., 1979, 209–216 | MR | Zbl