$\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 909-917.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be the free product of two Abelian torsion-free groups, let $P\triangleleft A$ and $P\subseteq C$, where $C$ is the Cartesian subgroup of the group $A$, and let $\mathbb Z(A/P)$ contain no zero divisors. In the paper it is proved that, in this case, any automorphism of the group $A/P'$ is inner. This result generalized the well-known result of Bachmuth, Formanek, and Mochizuki on the automorphisms of groups of the form $F_2/R'$, $R\triangleleft F_2$, $R\subseteq F'_2$, where $F_2$ is a free group of rank two.
@article{MZM_2001_70_6_a8,
     author = {P. V. Ushakov},
     title = {$\operatorname{IA}${-Automorphisms} of {Free} {Products} of {Two} {Abelian} {Torsion-Free} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--917},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/}
}
TY  - JOUR
AU  - P. V. Ushakov
TI  - $\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 909
EP  - 917
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/
LA  - ru
ID  - MZM_2001_70_6_a8
ER  - 
%0 Journal Article
%A P. V. Ushakov
%T $\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups
%J Matematičeskie zametki
%D 2001
%P 909-917
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/
%G ru
%F MZM_2001_70_6_a8
P. V. Ushakov. $\operatorname{IA}$-Automorphisms of Free Products of Two Abelian Torsion-Free Groups. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 909-917. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a8/

[1] Bachmuth S., Formanek E., Mochizuki H. Y., “$\operatorname {IA}$-automorphisms of certain two-generator torsion-free groups”, J. Algebra, 40 (1976), 19–30 | DOI | MR | Zbl

[2] Ushakov P. V., Ob avtomorfizmakh proizvedenii abelevykh grupp, Dep. VINITI RAN 23.12.99 No. 3802-V99, VINITI, M., 1999

[3] Shmelkin A. L., “O svobodnykh proizvedeniyakh grupp”, Matem. sb., 79 (121):4 (8) (1969), 616–620 | MR | Zbl

[4] Shmelkin A. L., “O nekotorykh faktorgruppakh svobodnogo proizvedeniya”, Tr. sem. im. I. G. Petrovskogo, no. 5, Izd-vo Mosk. un-ta, M., 1979, 209–216 | MR | Zbl