Coherent Transforms and Irreducible Representations Corresponding to Complex Structures on a Cylinder and on a Torus
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 854-874.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of algebras with non-Lie commutation relations whose symplectic leaves are surfaces of revolution: a cylinder or a torus. Over each of such surfaces we introduce a family of complex structures and Hilbert spaces of antiholomorphic sections in which the irreducible Hermitian representations of the original algebra are realized. The reproducing kernels of these spaces are expressed in terms of the Riemann theta function and its modifications. They generate quantum Kähler structures on the surface and the corresponding quantum reproducing measures. We construct coherent transforms intertwining abstract representations of an algebra with irreducible representations, and these transforms are also expressed via the theta function.
@article{MZM_2001_70_6_a4,
     author = {M. V. Karasev and E. M. Novikova},
     title = {Coherent {Transforms} and {Irreducible} {Representations} {Corresponding} to {Complex} {Structures} on a {Cylinder} and on a {Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {854--874},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a4/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - E. M. Novikova
TI  - Coherent Transforms and Irreducible Representations Corresponding to Complex Structures on a Cylinder and on a Torus
JO  - Matematičeskie zametki
PY  - 2001
SP  - 854
EP  - 874
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a4/
LA  - ru
ID  - MZM_2001_70_6_a4
ER  - 
%0 Journal Article
%A M. V. Karasev
%A E. M. Novikova
%T Coherent Transforms and Irreducible Representations Corresponding to Complex Structures on a Cylinder and on a Torus
%J Matematičeskie zametki
%D 2001
%P 854-874
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a4/
%G ru
%F MZM_2001_70_6_a4
M. V. Karasev; E. M. Novikova. Coherent Transforms and Irreducible Representations Corresponding to Complex Structures on a Cylinder and on a Torus. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 854-874. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a4/

[1] Klauder J. R., “Continuous representation theory”, J. Math. Phys., 4 (1963), 1055–1073 | DOI | MR | Zbl

[2] Berezin F. A., “Vikovskie i anti-vikovskie simvoly operatorov”, Matem. sb., 86 (1971), 578–610 | MR

[3] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36:5 (1972), 1134–1167 | MR | Zbl

[4] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh prilozheniya, Nauka, M., 1987

[5] Zhang W.-M., Feng D. H., Gilmore R., “Coherent states. Theory and some applications”, Rev. Modern Phys., 26 (1990), 867–927 | DOI

[6] Blattner R., “On geometric quantization”, Lecture Notes in Math., 1037, 1983, 209–241 | MR | Zbl

[7] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–178 | MR

[8] Karasev M. V., Maslov V. P., “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (1984), 115–173 | MR | Zbl

[9] Arik M., Coon D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR

[10] Bergmann S., The kernel functions and conformal mapping, Amer. Math. Soc. Math. Surveys, 5, 1950

[11] Tuynman G. M., “Generalized Bergmann kernels and geometric quantization”, J. Math. Phys., 28:3 (1987), 573–583 | DOI | MR | Zbl

[12] Bargmann V., “On a Hilbert space of analytic functions and an associated integral transform”, Comm. Pure Appl. Math., 14 (1961), 187–214 | DOI | MR | Zbl

[13] Berezin F. A., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR

[14] Rawnsley J., “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford Ser. (2), 28 (1977), 403–415 | DOI | MR | Zbl

[15] Cahen M., Gutt S., Rawnsley J., “Quantization of Kähler manifolds. I; II; III; IV”, J. Geom. Phys., 7 (1990), 45–62 ; Trans. Amer. Math. Soc., 337 (1993), 73–98 ; Lett. Math. Phys., 30 (1994), 291–305 ; Lett. Math. Phys., 30 (1995), 159–168 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[16] Sklyanin E., “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funktsion. analiz i prilozh., 16:4 (1982), 27–34 ; 17:4 (1983), 34–48 | MR | Zbl | MR | Zbl

[17] Zhedanov A., “Nonlinear shift of $q$-Bose operators and $q$-coherent states”, J. Phys. A, 24 (1991), L1129–L1131 | DOI | MR

[18] Karasev M. V., Novikova E. M., “Kvadratichnye skobki Puassona v effekte Zeemana. Neprivodimye predstavleniya i kogerentnye sostoyaniya”, UMN, 49:5 (1994), 169–170 | MR | Zbl

[19] Karasev M. V., “Quantization and coherent states over Lagrangian submanifolds”, Russian J. Math. Phys., 3:3 (1995), 393–400 | MR | Zbl

[20] Karasev M. V., Novikova E. M., “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | MR | Zbl

[21] Karasev M. V., Novikova E. M., “Coherent transform of spectral problem and algebras with nonlinear commutation relations”, J. Math. Sci., 95:6 (1999), 2703–2798 | DOI | MR | Zbl

[22] Karasev M. V., “Advances in quantization: quantum tensors, explicit $*$-products, and restriction to irreducible leaves”, Differential Geom. Appl., 9 (1998), 89–134 | DOI | MR | Zbl

[23] Karasev M. V., Novikova E. M., “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, ed. M. V. Karasev, Publ. AMS, Providence, RI, 1998, 1–202 | MR

[24] Odzijewicz A., “Quantum algebras and $q$-special functions related to coherent states maps of the disk”, Comm. Math. Phys., 192 (1999), 183–215 | DOI | MR

[25] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | Zbl

[26] Cartier P., “Quantum mechanical commutation relations and theta-functions”, Proc. Symp. Pure Math., 9 (1966), 361–383 | MR | Zbl

[27] Lion Zh., Vern M., Predstavlenie Veilya, indeks Maslova i teta-ryady, Mir, M., 1983

[28] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988

[29] Weinstein A., “Classical theta-functions and quantum tori”, Publ. RIMS, Kyoto Univ., 30 (1994), 327–333 | DOI | MR | Zbl

[30] Varchenko A., Multidimensional hypergeometric functions and representation theory of Lie-algebras and quantum groups, World Scientific, 1995

[31] Karasev M., “Quantum surfaces, special functions, and the tunneling effect”, Lett. Math. Phys., 56:3 (2001) | DOI | MR | Zbl