First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 839-844

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence problem for rational first integrals of groups of complex linear transformations. The results obtained are used to study natural mechanical systems with homogeneous potential, in particular, the Suslov problem of motion of a rigid body about a fixed point under a nonholonomic constraint in the Kozlov case of zero constant energy.
@article{MZM_2001_70_6_a2,
     author = {S. L. Ziglin},
     title = {First {Integrals} of {Groups} of {Complex} {Linear} {Transformations} and of {Natural} {Mechanical} {Systems} with {Homogeneous} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {839--844},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
JO  - Matematičeskie zametki
PY  - 2001
SP  - 839
EP  - 844
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/
LA  - ru
ID  - MZM_2001_70_6_a2
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
%J Matematičeskie zametki
%D 2001
%P 839-844
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/
%G ru
%F MZM_2001_70_6_a2
S. L. Ziglin. First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 839-844. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/