Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_6_a2, author = {S. L. Ziglin}, title = {First {Integrals} of {Groups} of {Complex} {Linear} {Transformations} and of {Natural} {Mechanical} {Systems} with {Homogeneous} {Potential}}, journal = {Matemati\v{c}eskie zametki}, pages = {839--844}, publisher = {mathdoc}, volume = {70}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/} }
TY - JOUR AU - S. L. Ziglin TI - First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential JO - Matematičeskie zametki PY - 2001 SP - 839 EP - 844 VL - 70 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/ LA - ru ID - MZM_2001_70_6_a2 ER -
%0 Journal Article %A S. L. Ziglin %T First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential %J Matematičeskie zametki %D 2001 %P 839-844 %V 70 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/ %G ru %F MZM_2001_70_6_a2
S. L. Ziglin. First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 839-844. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/
[1] Churchill R. C., Rod D. L., “On the determination of Ziglin monodromy groups”, SIAM J. Math. Anal., 22:6 (1991), 1790–1802 | DOI | MR | Zbl
[2] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986
[3] Klein F., Lektsii o razvitii matematiki v XIX stoletii, T. 1, ONTI, M.–L., 1937
[4] Ford R., Avtomorfnye funktsii, ONTI, M.–L., 1936
[5] Yoshida H., “A criterion for non-existence of an additional integral in Hamiltonian systems with homogeneous potential”, Phys. D, 29:1, 2 (1987), 128–142 | DOI | MR | Zbl
[6] Yoshida H., “A criterion for non-existence of an additional analytic integral in Hamiltonian systems with $n$ degrees of freedom”, Phys. Lett. A, 141:3, 4 (1989), 108–112 | DOI | MR
[7] Ziglin S. L., “Ob integralakh v involyutsii grupp lineinykh simplekticheskikh preobrazovanii i naturalnykh mekhanicheskikh sistem s odnorodnym potentsialom”, Funktsion. analiz i ego prilozh., 34:3 (2000), 26–36 | MR | Zbl
[8] Morales-Ruis J. J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Math., 179, Birkhäuser, 1999
[9] Ains E. L., Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939
[10] Beitmen G., Erdeii F., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973
[11] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149
[12] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946
[13] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR
[14] Ziglin S. L., “Ob otsutstvii dopolnitelnogo pervogo integrala v odnoi zadache dinamiki tverdogo tela”, Dokl. AN SSSR, 292:4 (1987), 804–807 | MR | Zbl