First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 839-844.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence problem for rational first integrals of groups of complex linear transformations. The results obtained are used to study natural mechanical systems with homogeneous potential, in particular, the Suslov problem of motion of a rigid body about a fixed point under a nonholonomic constraint in the Kozlov case of zero constant energy.
@article{MZM_2001_70_6_a2,
     author = {S. L. Ziglin},
     title = {First {Integrals} of {Groups} of {Complex} {Linear} {Transformations} and of {Natural} {Mechanical} {Systems} with {Homogeneous} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {839--844},
     publisher = {mathdoc},
     volume = {70},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
JO  - Matematičeskie zametki
PY  - 2001
SP  - 839
EP  - 844
VL  - 70
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/
LA  - ru
ID  - MZM_2001_70_6_a2
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential
%J Matematičeskie zametki
%D 2001
%P 839-844
%V 70
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/
%G ru
%F MZM_2001_70_6_a2
S. L. Ziglin. First Integrals of Groups of Complex Linear Transformations and of Natural Mechanical Systems with Homogeneous Potential. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 839-844. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a2/

[1] Churchill R. C., Rod D. L., “On the determination of Ziglin monodromy groups”, SIAM J. Math. Anal., 22:6 (1991), 1790–1802 | DOI | MR | Zbl

[2] Kostrikin A. I., Manin Yu. I., Lineinaya algebra i geometriya, Nauka, M., 1986

[3] Klein F., Lektsii o razvitii matematiki v XIX stoletii, T. 1, ONTI, M.–L., 1937

[4] Ford R., Avtomorfnye funktsii, ONTI, M.–L., 1936

[5] Yoshida H., “A criterion for non-existence of an additional integral in Hamiltonian systems with homogeneous potential”, Phys. D, 29:1, 2 (1987), 128–142 | DOI | MR | Zbl

[6] Yoshida H., “A criterion for non-existence of an additional analytic integral in Hamiltonian systems with $n$ degrees of freedom”, Phys. Lett. A, 141:3, 4 (1989), 108–112 | DOI | MR

[7] Ziglin S. L., “Ob integralakh v involyutsii grupp lineinykh simplekticheskikh preobrazovanii i naturalnykh mekhanicheskikh sistem s odnorodnym potentsialom”, Funktsion. analiz i ego prilozh., 34:3 (2000), 26–36 | MR | Zbl

[8] Morales-Ruis J. J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Math., 179, Birkhäuser, 1999

[9] Ains E. L., Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939

[10] Beitmen G., Erdeii F., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973

[11] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 7–149

[12] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M.–L., 1946

[13] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–107 | MR

[14] Ziglin S. L., “Ob otsutstvii dopolnitelnogo pervogo integrala v odnoi zadache dinamiki tverdogo tela”, Dokl. AN SSSR, 292:4 (1987), 804–807 | MR | Zbl