Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_6_a10, author = {S. P. Khekalo}, title = {Iso-Huygens {Deformations} of {Homogeneous} {Differential} {Operators} {Related} to a {Special} {Cone} of {Rank~3}}, journal = {Matemati\v{c}eskie zametki}, pages = {927--940}, publisher = {mathdoc}, volume = {70}, number = {6}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a10/} }
TY - JOUR AU - S. P. Khekalo TI - Iso-Huygens Deformations of Homogeneous Differential Operators Related to a Special Cone of Rank~3 JO - Matematičeskie zametki PY - 2001 SP - 927 EP - 940 VL - 70 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a10/ LA - ru ID - MZM_2001_70_6_a10 ER -
S. P. Khekalo. Iso-Huygens Deformations of Homogeneous Differential Operators Related to a Special Cone of Rank~3. Matematičeskie zametki, Tome 70 (2001) no. 6, pp. 927-940. http://geodesic.mathdoc.fr/item/MZM_2001_70_6_a10/
[1] Gindikin S. G., “Analiz v odnorodnykh oblastyakh”, UMN, 19:4 (1964), 3–92 | MR | Zbl
[2] Vainberg B. R., Gindikin S. G., “Ob usilennom printsipe Gyuigensa dlya odnogo klassa differentsialnykh operatorov s postoyannymi koeffitsientami”, Tr. MMO, 16, URSS, M., 1967, 151–180 | MR | Zbl
[3] Garding L., “The solution of Cauchy's problem for two totally hyperbolic differential equations by means of Riesz integrals”, Ann. Math., 48:4 (1947), 785–826 | DOI | MR | Zbl
[4] Berest Y., “Hierarchies of Huygens' operators and Hadamard's conjecture”, Acta Appl. Math., 53 (1998), 125–185 | DOI | MR | Zbl
[5] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, UMN, 49:6 (1994), 8–78 | MR
[6] Berest Y., Molchanov Y., “Fundamental solution for partial differential equations with reflection group invariance”, J. Math. Phis., 36:8 (1995), 4324–4339 | DOI | MR | Zbl
[7] Gindikin S. G., “Zadacha Koshi dlya silno odnorodnykh differentsialnykh operatorov”, Tr. MMO, 16, URSS, M., 1967, 181–208 | MR | Zbl
[8] Berest Y. Y., Loutsenko I. M., “Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg–de Vries equation”, Comm. Math. Phys., 190 (1997), 113–132 | DOI | MR | Zbl
[9] Burchnall J. L., Chaundy T. W., “A set of differential equations, which can be solved by polynomials”, Proc. London Math. Soc., 30 (1929–1930), 401–414 | DOI
[10] Demidov E. E., Ierarkhiya Kadomtseva–Petrashvili i problema Shottki. Spetsialnyi kurs, MK NMU, M., 1995
[11] Khekalo S. P., “Fundamentalnoe reshenie iterirovannogo operatora tipa Keli–Gordinga”, UMN, 55:3 (2000), 191–192 | MR | Zbl