An Asymptotic Series for the Weber--Schafheitlin Integral
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 751-757.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic power series for the Weber–Schafheitlin integral whose coefficients are distributions.
@article{MZM_2001_70_5_a9,
     author = {R. N. Miroshin},
     title = {An {Asymptotic} {Series} for the {Weber--Schafheitlin} {Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--757},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - An Asymptotic Series for the Weber--Schafheitlin Integral
JO  - Matematičeskie zametki
PY  - 2001
SP  - 751
EP  - 757
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/
LA  - ru
ID  - MZM_2001_70_5_a9
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T An Asymptotic Series for the Weber--Schafheitlin Integral
%J Matematičeskie zametki
%D 2001
%P 751-757
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/
%G ru
%F MZM_2001_70_5_a9
R. N. Miroshin. An Asymptotic Series for the Weber--Schafheitlin Integral. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 751-757. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/

[1] Miroshin R. N., “Asimptoticheskaya otsenka integrala ot proizvedeniya dvukh modifitsirovannykh besselevykh funktsii i stepennoi funktsii”, Matem. zametki, 61:3 (1997), 456–458 | MR | Zbl

[2] Magnus W., Oberhettinger F., Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, New York, 1966

[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[4] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, T. 2, Nauka, M., 1970

[5] Miroshin R. N., “Convergence of the Longuet–Higgins series for Gaussian stationary Markov process of the first order”, Teoriya veroyatn. i ee prim., 26:1 (1981), 101–120 | MR | Zbl

[6] Miroshin R. N., Peresecheniya krivykh gaussovskimi protsessami, Izd-vo LGU, L., 1981 | Zbl

[7] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978