@article{MZM_2001_70_5_a9,
author = {R. N. Miroshin},
title = {An {Asymptotic} {Series} for the {Weber{\textendash}Schafheitlin} {Integral}},
journal = {Matemati\v{c}eskie zametki},
pages = {751--757},
year = {2001},
volume = {70},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/}
}
R. N. Miroshin. An Asymptotic Series for the Weber–Schafheitlin Integral. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 751-757. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a9/
[1] Miroshin R. N., “Asimptoticheskaya otsenka integrala ot proizvedeniya dvukh modifitsirovannykh besselevykh funktsii i stepennoi funktsii”, Matem. zametki, 61:3 (1997), 456–458 | MR | Zbl
[2] Magnus W., Oberhettinger F., Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, New York, 1966
[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971
[4] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, T. 2, Nauka, M., 1970
[5] Miroshin R. N., “Convergence of the Longuet–Higgins series for Gaussian stationary Markov process of the first order”, Teoriya veroyatn. i ee prim., 26:1 (1981), 101–120 | MR | Zbl
[6] Miroshin R. N., Peresecheniya krivykh gaussovskimi protsessami, Izd-vo LGU, L., 1981 | Zbl
[7] Kech V., Teodoresku P., Vvedenie v teoriyu obobschennykh funktsii s prilozheniyami v tekhnike, Mir, M., 1978