Exact Inclusions of Gehring Classes in Muckenhoupt Classes
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 742-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

An exact bound for exponents of Muckenhoupt classes of functions containing a given Gehring class is obtained in the one-dimensional case.
@article{MZM_2001_70_5_a8,
     author = {N. A. Malaksiano},
     title = {Exact {Inclusions} of {Gehring} {Classes} in {Muckenhoupt} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {742--750},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a8/}
}
TY  - JOUR
AU  - N. A. Malaksiano
TI  - Exact Inclusions of Gehring Classes in Muckenhoupt Classes
JO  - Matematičeskie zametki
PY  - 2001
SP  - 742
EP  - 750
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a8/
LA  - ru
ID  - MZM_2001_70_5_a8
ER  - 
%0 Journal Article
%A N. A. Malaksiano
%T Exact Inclusions of Gehring Classes in Muckenhoupt Classes
%J Matematičeskie zametki
%D 2001
%P 742-750
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a8/
%G ru
%F MZM_2001_70_5_a8
N. A. Malaksiano. Exact Inclusions of Gehring Classes in Muckenhoupt Classes. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 742-750. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a8/

[1] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[2] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl

[3] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51:3 (1974), 241–250 | MR | Zbl

[4] Bojarski B., “Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings”, Ann. Acad. Sci. Fenn. A. Math., 10 (1985), 291–296 | MR

[5] Bojarski B., “On Gurov–Reshetnyak classes”, Proc. BMO-Seminar (Joensu, Finland, June 1988), Joensu Univ., 1989 | Zbl

[6] Wik I., “Reverse Hölder inequalities with constant close to $1$”, Ricerche di Matematica, 39:1 (1990), 151–157 | MR | Zbl

[7] Korey M. B., “Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation”, J. Fourier Anal. Appl., 4:4, 5 (1998), 491–519 | DOI | MR | Zbl

[8] Sbordone C., “Rearrangement of functions and reverse Hölder inequalities”, Research Notes in Math., 125 (1983), 139–148 | MR

[9] D'Apuzzo L., Sbordone C., “Reverse Hölder inequalities. A sharp result”, Rendiconti di Math. Ser. VII, 10 (1990), 357–366 | MR | Zbl

[10] Korenovskii A. A., “O tochnom prodolzhenii obratnogo neravenstva Geldera i usloviya Makenkhaupta”, Matem. zametki, 52:6 (1992), 32–44 | MR | Zbl

[11] Franciosi M., Moscariello G., “Higher integrability results”, Manuscripta Math., 52:1–3 (1985), 151–170 | DOI | MR | Zbl

[12] Hardy G. H., Littlewood J. E., Polya G., “Some simple inequalities satisfied by convex functions”, Messenger of Math., 58 (1929), 145–152