Periodic Abelian Groups with $UA$-Rings of Endomorphisms
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 736-741

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring $R$ is said to be a unique addition ring (a $UA$-ring) if its multiplicative semigroup $(R,\cdot)$ can uniquely be endowed with a binary operation $+$ in such a way that $(R,\cdot,+)$ becomes a ring. An Abelian group is said to be an $\operatorname{End}$-$UA$-group if the endomorphism ring of the group is a $UA$-ring. In the paper we study conditions under which an Abelian group is an $\operatorname{End}$-$UA$-group.
@article{MZM_2001_70_5_a7,
     author = {O. V. Ljubimtsev},
     title = {Periodic {Abelian} {Groups} with $UA${-Rings} of {Endomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {736--741},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a7/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Periodic Abelian Groups with $UA$-Rings of Endomorphisms
JO  - Matematičeskie zametki
PY  - 2001
SP  - 736
EP  - 741
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a7/
LA  - ru
ID  - MZM_2001_70_5_a7
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Periodic Abelian Groups with $UA$-Rings of Endomorphisms
%J Matematičeskie zametki
%D 2001
%P 736-741
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a7/
%G ru
%F MZM_2001_70_5_a7
O. V. Ljubimtsev. Periodic Abelian Groups with $UA$-Rings of Endomorphisms. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 736-741. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a7/