Cotangent Bundle over Projective Space and the Manifold of Nondegenerate Null-Pairs
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 718-735
Cet article a éte moissonné depuis la source Math-Net.Ru
A nondegenerate null-pair of the real projective space $P^n$ consists of a point and of a hyperplane nonincident to this point. The manifold of all nondegenerate null-pairs $\mathfrak N$ carries a natural Kählerian structure of hyperbolic type and of constant nonzero holomorphic sectional curvature. In particular, $\mathfrak N$ is a symplectic manifold. We prove that $\mathfrak N$ is endowed with the structure of a fiber bundle over the projective space $P^n$, whose typical fiber is an affine space. The vector space associated to a fiber of the bundle is naturally isomorphic to the cotangent space to $P^n$. We also construct a global section of this bundle; this allows us to construct a diffeomorphism $\sigma$ between the manifold of nondegenerate null-pairs and the cotangent bundle over the projective space. The main statement of the paper asserts that the explicit diffeomorphism $\sigma\colon\mathfrak N\to T^*P^n$ is a symplectomorphism of the natural symplectic structure on $\mathfrak N$ to the canonical symplectic structure on $T^*P^n$.
@article{MZM_2001_70_5_a6,
author = {V. V. Konnov},
title = {Cotangent {Bundle} over {Projective} {Space} and the {Manifold} of {Nondegenerate} {Null-Pairs}},
journal = {Matemati\v{c}eskie zametki},
pages = {718--735},
year = {2001},
volume = {70},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a6/}
}
V. V. Konnov. Cotangent Bundle over Projective Space and the Manifold of Nondegenerate Null-Pairs. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 718-735. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a6/
[1] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966
[2] Kirichenko V. F., “Generalized quasi-Kaehlerian manifolds and axioms of $CR$-submanifolds in generalized Hermitian geometry, II”, Geometriae Dedicata, 52 (1994), 53–85 | DOI | MR | Zbl
[3] Postnikov M. M., Lektsii po geometrii. Semestr V. Gruppy i algebry Li, Nauka, M., 1982
[4] Besse A., Mnogoobraziya Einshteina, T. 1, Mir, M., 1990
[5] Zulanke R., Vintgen P., Differentsialnaya geometriya i rassloeniya, Mir, M., 1975
[6] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973