A Criterion for Contiguity of Quasiconcave Functions
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 780-786.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasiconcave functions $\rho _0$ and $\rho _1$ belong to the same scale if there exist quasiconcave functions $\psi _0$ and $\psi _1$ and numbers $0\theta _01$, $0\theta _11$ such that $\rho _0=\psi _0^{1-\theta _0}\psi _1^{\theta _0}$ and $\rho _1=\psi _0^{1-\theta _1}\psi _1^{\theta _1}$. We establish a criterion for such functions to belong to the same scale up to equivalence. This criterion is obtained in terms of nodes of the corresponding linear-constant step-functions. It turns out that nodes must be equivalent to sequences.
@article{MZM_2001_70_5_a12,
     author = {V. I. Ovchinnikov and A. S. Titenkov},
     title = {A {Criterion} for {Contiguity} of {Quasiconcave} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {780--786},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a12/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
AU  - A. S. Titenkov
TI  - A Criterion for Contiguity of Quasiconcave Functions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 780
EP  - 786
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a12/
LA  - ru
ID  - MZM_2001_70_5_a12
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%A A. S. Titenkov
%T A Criterion for Contiguity of Quasiconcave Functions
%J Matematičeskie zametki
%D 2001
%P 780-786
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a12/
%G ru
%F MZM_2001_70_5_a12
V. I. Ovchinnikov; A. S. Titenkov. A Criterion for Contiguity of Quasiconcave Functions. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 780-786. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a12/

[1] Lizorkin P. I., “Prostranstva obobschennoi gladkosti”, Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 381–415

[2] Ovchinnikov V. I., “Interpolyatsionnye teoremy, vytekayuschie iz neravenstva Grotendika”, Funktsion. analiz i ego prilozh., 10:4 (1976), 45–54 | MR | Zbl

[3] Titenkov A. S., “O pokazatelyakh rastyazheniya kvazivognutykh funktsii”, Matematicheskie nauki i informatsionnye obrazovatelnye tekhnologii, Kursk, 1997, 39–46

[4] Oskolkov K. I., “Approksimativnye svoistva summiruemykh funktsii na mnozhestvakh polnoi mery”, Matem. sb., 103(145):4(8) (1977), 563–589 | MR | Zbl

[5] Janson S., “Minimal and maximal method of interpolation”, J. Func. Anal., 44 (1981), 50–73 | DOI | MR | Zbl

[6] Brudnyi Ju. A., Krugliak N. Ja., Interpolation Functors and Interpolation Spaces, I, North-Holland, Amsterdam, 1991 | Zbl

[7] Titenkov A. S., Pokazateli rastyazheniya lineino stupenchatoi funktsii, Dep. v VINITI 25.11.98, No. 3478–V98, VINITI, M., 1998

[8] Ovchinnikov V. I., Titenkov A. S., “Konstruktsiya S. Yansona dlya par prostranstv $L_p$”, Tr. matem. fakulteta, no. 3, Voronezh, 1998, 52–56

[9] Brudnyi Ju. A., Shteinberg A., “Calderon couples of Lipschitz spaces”, J. Func. Anal., 131 (1995), 459–498 | DOI | MR | Zbl

[10] Ovchinnikov V. I., “On reiteration theorems”, Amer. Math. Soc. Transl. (2), 184 (1998), 185–198 | MR | Zbl