Regular Semigroups of Endomorphisms of von Neumann Factors
Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 643-659.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of $E_0$-semigroups of endomorphisms of a von Neumann factor $\mathscr M$ possessing the following property: an $e_0$-semigroup of endomorphisms of $\mathscr B(\mathscr H)$ , where $\mathscr H$ is the standard representation space for $\mathscr M$ , and a product system of Hilbert spaces can be associated with each of these $E_0$-semigroups.
@article{MZM_2001_70_5_a0,
     author = {G. G. Amosov and A. V. Bulinski and M. E. Shirokov},
     title = {Regular {Semigroups} of {Endomorphisms} of von {Neumann} {Factors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--659},
     publisher = {mathdoc},
     volume = {70},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a0/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - A. V. Bulinski
AU  - M. E. Shirokov
TI  - Regular Semigroups of Endomorphisms of von Neumann Factors
JO  - Matematičeskie zametki
PY  - 2001
SP  - 643
EP  - 659
VL  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a0/
LA  - ru
ID  - MZM_2001_70_5_a0
ER  - 
%0 Journal Article
%A G. G. Amosov
%A A. V. Bulinski
%A M. E. Shirokov
%T Regular Semigroups of Endomorphisms of von Neumann Factors
%J Matematičeskie zametki
%D 2001
%P 643-659
%V 70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a0/
%G ru
%F MZM_2001_70_5_a0
G. G. Amosov; A. V. Bulinski; M. E. Shirokov. Regular Semigroups of Endomorphisms of von Neumann Factors. Matematičeskie zametki, Tome 70 (2001) no. 5, pp. 643-659. http://geodesic.mathdoc.fr/item/MZM_2001_70_5_a0/

[1] Powers R. T., “Possible classification of continuous spatial semigroups of $*$-endomorfisms of $\mathscr B(\mathscr H)$”, Proceedings of Symposia in Pure Math., 59, 1996, 161–173 | MR | Zbl

[2] Powers R. T., “Recent results concerning $E_0$-semigroup of $\mathscr B(\mathscr H)$”, Operator Algebras and Quantum Field Theory, Proc. of Conf. Dedicated to D. Kastler, eds. S. Doplicher et al., Int. Press, Cambridge (M.A.), 1997, 515–524 | MR | Zbl

[3] Amosov G. G., Bulinskii A. V., “Indeks Pauersa–Arvesona dlya kvazisvobodnykh dinamicheskikh polugrupp”, Matem. zametki, 62:6 (1997), 933–936 | MR | Zbl

[4] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, T. I, Mir, M., 1982 | Zbl

[5] Kadison R., Ringrose J., Fundamentals of the Theory of Operator Algebras, V. I, Acad. Press, London–New York, 1983 ; V. II, Acad. Press, London–New York, 1986 | Zbl | Zbl

[6] Arveson W., “Continuous analogues of Fock space”, Mem. Amer. Math. Soc., 409, 1989, 1–66 | MR

[7] Bhat B. V. R., “An index theory for quantum dynamical semigroup”, Trans. Amer. Math. Soc., 348 (1996), 561–583 | DOI | MR | Zbl

[8] Davies E. B., One-Parameter Semigroups, Acad. Press, London–New York, 1980 | Zbl

[9] Bulinskii A. V., “Algebraicheskie $K$-sistemy i polupotoki sdvigov Pauersa”, UMN, 52:5 (1996), 145–146

[10] Accardi L., Cecchini C., “Conditional expectation in von Neumann algebras and a theorem of Takesaki”, J. Funct. Anal., 45 (1982), 245–273 | DOI | MR | Zbl

[11] Bratteli O., Robinson D., Operator Algebras and Quantum Statistical Mechanics, V. II, Springer-Verlag, New York, 1981 | Zbl

[12] Powers R. T., Stormer E., “Free states of canonical anticommutation relations”, Commun. Math. Phys., 16 (1970), 1–33 | DOI | MR | Zbl

[13] Evans D., “Completely positive quasifree maps on the CAR algebra”, Commun. Math. Phys., 70 (1979), 53–68 | DOI | MR | Zbl

[14] Araki H., “On quasifree states of CAR and Bogoliubov automorphisms”, Publ. RIMS (Kyoto Univ.), 6 (1971), 385–442 | DOI | MR | Zbl

[15] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to the required asymptotic dynamics of the associated completely positive semigroup”, Infinit. Dimen. Anal. Quant. Prob. Rel. Topics, 2:3 (2000), 237–246 | MR

[16] Murakami T., Yamagami S., “On types of quasifree representations of Clifford algebra”, Publ. RIMS (Kyoto Univ.), 31 (1995), 33–44 | DOI | MR | Zbl