Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_4_a9, author = {V. L. Kreptogorskii}, title = {Implementation of the {Sparr} {Interpolation} {Method} in {Classes} of {Spaces} of {Smooth} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {581--590}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a9/} }
TY - JOUR AU - V. L. Kreptogorskii TI - Implementation of the Sparr Interpolation Method in Classes of Spaces of Smooth Functions JO - Matematičeskie zametki PY - 2001 SP - 581 EP - 590 VL - 70 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a9/ LA - ru ID - MZM_2001_70_4_a9 ER -
V. L. Kreptogorskii. Implementation of the Sparr Interpolation Method in Classes of Spaces of Smooth Functions. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 581-590. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a9/
[1] Sparr G., “Interpolation of several Banach spaces”, Ann. Mat. Pura Appl., 99 (1976), 247–316 | MR
[2] Cobos F., Peetre J., “Interpolation of compact operators: the multidimensional case”, Proc. London Math. Soc. Ser. 3, 63 (1991), 371–400 | DOI | MR | Zbl
[3] Carro M. J., “Real interpolation for families of Banach spaces”, Studia Math., 59:1 (1994), 1–21 | MR
[4] Asekritova I., Krugljak N., “On equivalence of $K$- and $J$-methods for $(n+1)$-tuples of Banach spaces”, Studia Math., 122:2 (1997), 99–115 | MR
[5] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980
[6] Krepkogorskii V. L., “Interpolyatsiya v prostranstvakh Lizorkina–Tribelya i Besova”, Matem. sb., 185:7 (1994), 63–76
[7] Krepkogorskii V. L., “O mnogomernykh metodakh interpolyatsii”, Izv. vuzov. Matem., 1999, no. 11, 41–49 | MR | Zbl
[8] Fernandez D. L., “Interpolation of $2^d$ Banach spaces and the Calderon space $X(E)$”, Proc. London Math. Soc. Ser. 3, 56 (1988), 143–162 | DOI | Zbl