Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 560-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2001_70_4_a7,
     author = {I. Yu. Domanov and M. M. Malamud},
     title = {Invariant and {Hyperinvariant} {Subspace} {Lattices} of {Operators} $J^\alpha\otimes B$ in {Sobolev} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {560--567},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/}
}
TY  - JOUR
AU  - I. Yu. Domanov
AU  - M. M. Malamud
TI  - Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces
JO  - Matematičeskie zametki
PY  - 2001
SP  - 560
EP  - 567
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/
LA  - ru
ID  - MZM_2001_70_4_a7
ER  - 
%0 Journal Article
%A I. Yu. Domanov
%A M. M. Malamud
%T Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces
%J Matematičeskie zametki
%D 2001
%P 560-567
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/
%G ru
%F MZM_2001_70_4_a7
I. Yu. Domanov; M. M. Malamud. Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 560-567. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/

[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967

[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980

[3] Malamud M. M., “Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators”, Integral and Differential Operators, Operator Theory: Adv. and Appl., 102, 1998, 143–167 | MR | Zbl

[4] Brickman L., Fillmore P. A., “The invariant subspace lattice of a linear transformation”, Canad. J. Math., 19 (1967), 810–822 | MR | Zbl

[5] Tsekanovskii E. R., “Ob opisanii invariantnykh podprostranstv i odnokletochnosti operatora integrirovaniya v prostranstve $W_2^{(p)}$”, UMN, 20:6 (126) (1965), 169–172 | MR

[6] Domanov I., “On cyclic and invariant subspaces of an operator $J\otimes B\ $ in the Sobolev spaces of vector functions”, Methods of Functional Analysis and Topology, 1 (1999) | MR | Zbl

[7] Sz.-Nagy B., Foias C., Harmonic Analysis of Operators on Hilbert Space, Acad. Kiado, Budapest, 1970

[8] Sz.-Nagy B., Foias C., “Modèle Jordan pour une classe d'opérateurs de l'espace de Hilbert”, Acta Sci. Math., 31:1–2 (1970), 91–115 | MR