Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_4_a7, author = {I. Yu. Domanov and M. M. Malamud}, title = {Invariant and {Hyperinvariant} {Subspace} {Lattices} of {Operators} $J^\alpha\otimes B$ in {Sobolev} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {560--567}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/} }
TY - JOUR AU - I. Yu. Domanov AU - M. M. Malamud TI - Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces JO - Matematičeskie zametki PY - 2001 SP - 560 EP - 567 VL - 70 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/ LA - ru ID - MZM_2001_70_4_a7 ER -
%0 Journal Article %A I. Yu. Domanov %A M. M. Malamud %T Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces %J Matematičeskie zametki %D 2001 %P 560-567 %V 70 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/ %G ru %F MZM_2001_70_4_a7
I. Yu. Domanov; M. M. Malamud. Invariant and Hyperinvariant Subspace Lattices of Operators $J^\alpha\otimes B$ in Sobolev Spaces. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 560-567. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a7/
[1] Gokhberg I. Ts., Krein M. G., Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967
[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[3] Malamud M. M., “Invariant and hyperinvariant subspaces of direct sums of simple Volterra operators”, Integral and Differential Operators, Operator Theory: Adv. and Appl., 102, 1998, 143–167 | MR | Zbl
[4] Brickman L., Fillmore P. A., “The invariant subspace lattice of a linear transformation”, Canad. J. Math., 19 (1967), 810–822 | MR | Zbl
[5] Tsekanovskii E. R., “Ob opisanii invariantnykh podprostranstv i odnokletochnosti operatora integrirovaniya v prostranstve $W_2^{(p)}$”, UMN, 20:6 (126) (1965), 169–172 | MR
[6] Domanov I., “On cyclic and invariant subspaces of an operator $J\otimes B\ $ in the Sobolev spaces of vector functions”, Methods of Functional Analysis and Topology, 1 (1999) | MR | Zbl
[7] Sz.-Nagy B., Foias C., Harmonic Analysis of Operators on Hilbert Space, Acad. Kiado, Budapest, 1970
[8] Sz.-Nagy B., Foias C., “Modèle Jordan pour une classe d'opérateurs de l'espace de Hilbert”, Acta Sci. Math., 31:1–2 (1970), 91–115 | MR