Approximation by Simplest Fractions
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 553-559.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a number of problems concerning the uniform approximation of complex-valued continuous functions $f(z)$ on compact subsets of the complex plane by simplest fractions of the form $\Theta _n(z)=\sum _{j=1}^n1/(z-z_j)$ are considered. In particular, it is shown that the best approximation of a function $f$ by the fractions $\Theta _n$ is of the same order of vanishing as the best approximations by polynomials of degree $\le n$.
@article{MZM_2001_70_4_a6,
     author = {V. I. Danchenko and D. Ya. Danchenko},
     title = {Approximation by {Simplest} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {553--559},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/}
}
TY  - JOUR
AU  - V. I. Danchenko
AU  - D. Ya. Danchenko
TI  - Approximation by Simplest Fractions
JO  - Matematičeskie zametki
PY  - 2001
SP  - 553
EP  - 559
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/
LA  - ru
ID  - MZM_2001_70_4_a6
ER  - 
%0 Journal Article
%A V. I. Danchenko
%A D. Ya. Danchenko
%T Approximation by Simplest Fractions
%J Matematičeskie zametki
%D 2001
%P 553-559
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/
%G ru
%F MZM_2001_70_4_a6
V. I. Danchenko; D. Ya. Danchenko. Approximation by Simplest Fractions. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 553-559. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/

[1] Gorin E. A., “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zh., 1962, no. 4, 506–508

[2] Gelfond A. O., “Ob otsenke mnimykh chastei kornei mnogochlenov s ogranichennymi proizvodnymi ot logarifmov na deistvitelnoi osi”, Matem. sb., 71 (113) (1966), 289–296 | MR | Zbl

[3] Danchenko V. I., “Otsenki rasstoyanii ot polyusov logarifmicheskikh proizvodnykh mnogochlenov do pryamykh i okruzhnostei”, Matem. sb., 185:8 (1994), 63–80 | Zbl

[4] Katsnelson V. E., “O nekotorykh operatorakh, deistvuyuschikh v prostranstvakh, porozhdennykh funktsiyami $\dfrac 1{z-z_k}$”, Teoriya funktsii, funktsion. analiz i ikh prilozh., 1967, no. 4, 58–66 | MR | Zbl

[5] Nikolaev E. G., “Geometricheskoe svoistvo kornei mnogochlenov”, Vestn. MGU. Ser. Matem., mekh., 1965, no. 5, 23–26 | MR | Zbl

[6] Danchenko V. I., Danchenko D. Ya., “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Tezisy dokl. shkoly-konferentsii, Izd-vo Kazanskogo universiteta, 1999, 74–77

[7] Kosukhin O. N., “Analog neravenstva Dzheksona dlya approksimatsii naiprosteishimi drobyami”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tr. 10-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo universiteta, 2000, 68–69