Approximation by Simplest Fractions
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 553-559
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a number of problems concerning the uniform approximation of complex-valued continuous functions $f(z)$ on compact subsets of the complex plane by simplest fractions of the form $\Theta _n(z)=\sum _{j=1}^n1/(z-z_j)$ are considered. In particular, it is shown that the best approximation of a function $f$ by the fractions $\Theta _n$ is of the same order of vanishing as the best approximations by polynomials of degree $\le n$.
@article{MZM_2001_70_4_a6,
author = {V. I. Danchenko and D. Ya. Danchenko},
title = {Approximation by {Simplest} {Fractions}},
journal = {Matemati\v{c}eskie zametki},
pages = {553--559},
publisher = {mathdoc},
volume = {70},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/}
}
V. I. Danchenko; D. Ya. Danchenko. Approximation by Simplest Fractions. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 553-559. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a6/