On a Class of Operator Equations
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 544-552

Voir la notice de l'article provenant de la source Math-Net.Ru

We assume that $E_1$ and $E_2$ are Banach spaces, $a\colon E_1\to E_2$ is a continuous linear surjective operator, $f\colon E_1\to E_2$ is a nonlinear completely continuous operator. In this paper, we study existence problems for the equation $a(x)=f(x)$ and estimate the topological dimension $dim$ of the set of solutions.
@article{MZM_2001_70_4_a5,
     author = {B. D. Gel'man},
     title = {On a {Class} of {Operator} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--552},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - On a Class of Operator Equations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 544
EP  - 552
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/
LA  - ru
ID  - MZM_2001_70_4_a5
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T On a Class of Operator Equations
%J Matematičeskie zametki
%D 2001
%P 544-552
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/
%G ru
%F MZM_2001_70_4_a5
B. D. Gel'man. On a Class of Operator Equations. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 544-552. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/