On a Class of Operator Equations
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 544-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

We assume that $E_1$ and $E_2$ are Banach spaces, $a\colon E_1\to E_2$ is a continuous linear surjective operator, $f\colon E_1\to E_2$ is a nonlinear completely continuous operator. In this paper, we study existence problems for the equation $a(x)=f(x)$ and estimate the topological dimension $dim$ of the set of solutions.
@article{MZM_2001_70_4_a5,
     author = {B. D. Gel'man},
     title = {On a {Class} of {Operator} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--552},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - On a Class of Operator Equations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 544
EP  - 552
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/
LA  - ru
ID  - MZM_2001_70_4_a5
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T On a Class of Operator Equations
%J Matematičeskie zametki
%D 2001
%P 544-552
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/
%G ru
%F MZM_2001_70_4_a5
B. D. Gel'man. On a Class of Operator Equations. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 544-552. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a5/

[1] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998

[2] Ricceri B., “On the topological dimension of the solution set of a class of nonlinear equations”, C. R. Acad. Sci. Paris, 325 (1997), 65–70 | MR | Zbl

[3] Fitzpatrick P. M., Massabo I., Pejsachowicz I., “On the covering dimension of the set of solutions of some nonlinear equations”, Trans. Amer. Math. Soc., 296:2 (1986), 777–798 | DOI | MR | Zbl

[4] Michael E., “Continuous selections, 1”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[6] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Voronezhskii gosuniversitet, Voronezh, 1986 | Zbl

[7] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[8] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973

[9] Gelman B. D., “Topologicheskie svoistva mnozhestva nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, Matem. sb., 188:12 (1997), 33–56 | MR | Zbl