A Cubic Model of a Real Variety
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 503-519

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a cubic model is constructed for a germ of a real subvariety in a complex space. It is shown that in its range of codimensions this model possesses the full spectrum of properties similar to well-known properties of tangent quadrics.
@article{MZM_2001_70_4_a2,
     author = {V. K. Beloshapka},
     title = {A {Cubic} {Model} of a {Real} {Variety}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {503--519},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - A Cubic Model of a Real Variety
JO  - Matematičeskie zametki
PY  - 2001
SP  - 503
EP  - 519
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/
LA  - ru
ID  - MZM_2001_70_4_a2
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T A Cubic Model of a Real Variety
%J Matematičeskie zametki
%D 2001
%P 503-519
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/
%G ru
%F MZM_2001_70_4_a2
V. K. Beloshapka. A Cubic Model of a Real Variety. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 503-519. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/