Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_4_a2, author = {V. K. Beloshapka}, title = {A {Cubic} {Model} of a {Real} {Variety}}, journal = {Matemati\v{c}eskie zametki}, pages = {503--519}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/} }
V. K. Beloshapka. A Cubic Model of a Real Variety. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 503-519. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a2/
[1] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 ; “II: Graded Lie algebras and geometric structures”, Proc. US–Japan Seminar in Differential Geometry, 1965, 147–150 | MR | Zbl
[2] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifold”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR
[3] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 1991, no. 2, 203–219 | Zbl
[4] Tumanov A. E., “Konechnomernost gruppy CR-avtomorfizmov standartnogo CR-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR, 52:3 (1988), 651–659 | MR | Zbl
[5] Beloshapka V. K., “CR-varieties of the type $(1,2)$ as varieties of “super-high” codimension”, Russian J. Math. Phys., 5:2 (1998), 399–404 | MR
[6] Shananina E. N., “Modeli CR-mnogoobrazii tipa $(1,k)$ pri $3\le k\le 7$ i ikh avtomorfizmy”, Matem. zametki, 67:3 (2000), 452–459 | MR | Zbl
[7] Chirka E. M., “Vvedenie v geometriyu CR-mnogoobrazii”, UMN, 46:1 (1991), 81–164 | MR | Zbl
[8] Baouendi M. S., Ebenfelt P., Rothschild L. P., Local Geometric Properties of Real Submanifolds in Complex Space, Preprint Trita-Mat-1999-20, November 1999, Royal Institute of Technology, Stockholm, Sweden, 1999
[9] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967
[10] Ezhov V., Schmalz G., Infinitezimale Starrheit hermitescher Quadriken in allgemeiner Lage, Preprint, 1998