Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 613-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the series $\sum _{k=1}^\infty a_k\sin kx$ and $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ whose coefficients satisfy the condition $a_k=a_{n_m}$ for $n_{m-1}$ , where the sequence $\{n_m\}$ can be expressed as the union of a finite number of lacunary sequences. The following results are obtained. If $ka_k\to0$ as $k\to\infty$, then the series $\sum _{k=1}^\infty a_k\sin kx$ is uniformly convergent. If $k|a_k|\le C$ for all $k$, then the sequence of partial sums of this series is uniformly bounded. If the series $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ is convergent for $x=0$ and $ka_k\to0$ as $k\to\infty$, then this series is uniformly convergent. If the sequence of partial sums of the series $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ for $x=0$ is bounded and $k|a_k|\le C$ for all $k$, then the sequence of partial sums of this series is uniformly bounded. In these assertions, conditions on the rates of decrease of the coefficients of the series are also necessary if the sequence $\{n_m\}$ is lacunary. In the general case, they are not necessary.
@article{MZM_2001_70_4_a12,
     author = {S. A. Telyakovskii},
     title = {Uniform {Convergence} of {Trigonometric} {Series} with {Rarely} {Changing} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {613--620},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a12/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients
JO  - Matematičeskie zametki
PY  - 2001
SP  - 613
EP  - 620
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a12/
LA  - ru
ID  - MZM_2001_70_4_a12
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients
%J Matematičeskie zametki
%D 2001
%P 613-620
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a12/
%G ru
%F MZM_2001_70_4_a12
S. A. Telyakovskii. Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 613-620. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a12/

[1] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[2] Shah S. M., “Trigonometric series with quasi-monotone coefficients”, Proc. Amer. Math. Soc., 13 (1962), 266–273 | DOI | MR | Zbl

[3] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure (trete soobschenie)”, Izv. AN SSSR. Ser. matem., 20 (1956), 385–412 | MR | Zbl