Maximal and Sylow Subgroups of Solvable Finite Groups
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 603-612

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of finite solvable groups in which any Sylow subgroup is the product of two cyclic subgroups is studied. In particular, it is proved that the nilpotent length of such a group is no greater than 4. It is also proved that the nilpotent length of a finite solvable group in which the index of any maximal subgroup is either a prime or the square of a prime or the cube of a prime does not exceed 5.
@article{MZM_2001_70_4_a11,
     author = {V. S. Monakhov and E. E. Gribovskaya},
     title = {Maximal and {Sylow} {Subgroups} of {Solvable} {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--612},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a11/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - E. E. Gribovskaya
TI  - Maximal and Sylow Subgroups of Solvable Finite Groups
JO  - Matematičeskie zametki
PY  - 2001
SP  - 603
EP  - 612
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a11/
LA  - ru
ID  - MZM_2001_70_4_a11
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A E. E. Gribovskaya
%T Maximal and Sylow Subgroups of Solvable Finite Groups
%J Matematičeskie zametki
%D 2001
%P 603-612
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a11/
%G ru
%F MZM_2001_70_4_a11
V. S. Monakhov; E. E. Gribovskaya. Maximal and Sylow Subgroups of Solvable Finite Groups. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 603-612. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a11/