On the Dimension of Nilpotent Algebras
Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 483-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Eggert conjecture claims that a finite commutative algebra $R$ over a field of prime characteristic $p$ has the property $\dim R\ge p\dim R^{(1)}$, where $R^{(1)}$ is the subspace of $R$ spanned by the $p$th powers of elements of $R$. We obtain results related to this conjecture and results on nilpotent algebras of rather high nilpotency class.
@article{MZM_2001_70_4_a0,
     author = {B. Amberg and L. S. Kazarin},
     title = {On the {Dimension} of {Nilpotent} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--490},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/}
}
TY  - JOUR
AU  - B. Amberg
AU  - L. S. Kazarin
TI  - On the Dimension of Nilpotent Algebras
JO  - Matematičeskie zametki
PY  - 2001
SP  - 483
EP  - 490
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/
LA  - ru
ID  - MZM_2001_70_4_a0
ER  - 
%0 Journal Article
%A B. Amberg
%A L. S. Kazarin
%T On the Dimension of Nilpotent Algebras
%J Matematičeskie zametki
%D 2001
%P 483-490
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/
%G ru
%F MZM_2001_70_4_a0
B. Amberg; L. S. Kazarin. On the Dimension of Nilpotent Algebras. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/

[1] Eggert N. H., “Quasi-regular groups of finite commutative nilpotent algebras”, Pacific J. Math., 36 (1971), 631–634 | MR | Zbl

[2] Amberg B., Kazarin L., “On the rank of a product of two finite $p$-groups and nilpotent $p$-algebras”, Comm. Algebra, 27:8 (1999), 3895–3907 | DOI | MR | Zbl

[3] Stack C., “Dimensions of nilpotent algebras over fields of prime characteristic”, Pacific J. Math., 176 (1996), 263–266 | MR | Zbl

[4] Stack C., “Some results on the structure of finite nilpotent algebras over fields of prime characteristic”, J. Combin. Math. Combin. Comput., 28 (1998), 327–335 | MR | Zbl

[5] Kruse R. L., Price T., Nilpotent Rings, Gordon and Breach, New York, 1969 | Zbl

[6] Shalev A., “The structure of finite $p$-groups: effective proof of the coclass conjectures”, Invent. Math., 115 (1994), 315–345 | DOI | MR | Zbl

[7] Suprunenko D. A., Tyškevič R. I., Commutative Matrices, Acad. Press, New York–London, 1968

[8] Brown W. C., “Constructing maximal commutative subalgebras of matrix rings in small dimensions”, Comm. Algebra, 25:12 (1997), 3923–3946 | DOI | MR | Zbl