Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_4_a0, author = {B. Amberg and L. S. Kazarin}, title = {On the {Dimension} of {Nilpotent} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {483--490}, publisher = {mathdoc}, volume = {70}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/} }
B. Amberg; L. S. Kazarin. On the Dimension of Nilpotent Algebras. Matematičeskie zametki, Tome 70 (2001) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2001_70_4_a0/
[1] Eggert N. H., “Quasi-regular groups of finite commutative nilpotent algebras”, Pacific J. Math., 36 (1971), 631–634 | MR | Zbl
[2] Amberg B., Kazarin L., “On the rank of a product of two finite $p$-groups and nilpotent $p$-algebras”, Comm. Algebra, 27:8 (1999), 3895–3907 | DOI | MR | Zbl
[3] Stack C., “Dimensions of nilpotent algebras over fields of prime characteristic”, Pacific J. Math., 176 (1996), 263–266 | MR | Zbl
[4] Stack C., “Some results on the structure of finite nilpotent algebras over fields of prime characteristic”, J. Combin. Math. Combin. Comput., 28 (1998), 327–335 | MR | Zbl
[5] Kruse R. L., Price T., Nilpotent Rings, Gordon and Breach, New York, 1969 | Zbl
[6] Shalev A., “The structure of finite $p$-groups: effective proof of the coclass conjectures”, Invent. Math., 115 (1994), 315–345 | DOI | MR | Zbl
[7] Suprunenko D. A., Tyškevič R. I., Commutative Matrices, Acad. Press, New York–London, 1968
[8] Brown W. C., “Constructing maximal commutative subalgebras of matrix rings in small dimensions”, Comm. Algebra, 25:12 (1997), 3923–3946 | DOI | MR | Zbl