Locality of Quadratic Forms for Point Perturbations of Schr\"odinger Operators
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 425-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study point perturbations of the Schrödinger operators within the framework of Krein's theory of self-adjoint extensions. A locality criterion for quadratic forms is proved for such perturbations.
@article{MZM_2001_70_3_a9,
     author = {K. V. Pankrashin},
     title = {Locality of {Quadratic} {Forms} for {Point} {Perturbations} of {Schr\"odinger} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {425--433},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a9/}
}
TY  - JOUR
AU  - K. V. Pankrashin
TI  - Locality of Quadratic Forms for Point Perturbations of Schr\"odinger Operators
JO  - Matematičeskie zametki
PY  - 2001
SP  - 425
EP  - 433
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a9/
LA  - ru
ID  - MZM_2001_70_3_a9
ER  - 
%0 Journal Article
%A K. V. Pankrashin
%T Locality of Quadratic Forms for Point Perturbations of Schr\"odinger Operators
%J Matematičeskie zametki
%D 2001
%P 425-433
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a9/
%G ru
%F MZM_2001_70_3_a9
K. V. Pankrashin. Locality of Quadratic Forms for Point Perturbations of Schr\"odinger Operators. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 425-433. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a9/

[1] Albeverio S., Gestezi F., Kheeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991

[2] Pavlov B. S., “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42:6 (1987), 99–131 | MR | Zbl

[3] Novikov S. P., “Dvumernye operatory Shredingera v periodicheskikh polyakh”, Itogi nauki i tekhniki VINITI AN SSSR. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 3–32

[4] Albeverio S., Geyler V. A., “The band structure of the general periodic Schrödinger operator with point interactions”, Comm. Math. Phys., 210:1 (2000), 29–48 | DOI | MR | Zbl

[5] Geyler V. A., Pankrashkin K. V., “On fractal structure of the spectrum for periodic point perturbations of the Schrödinger operator with a uniform magnetic field”, Operator Theory: Adv. and Appl., 108, 1999, 259–265 | MR | Zbl

[6] Shondin Yu. G., “Poluogranichennye lokalnye gamiltoniany dlya vozmuschenii laplasiana na krivykh s uglovymi tochkami v $\mathbb R^4$”, TMF, 106:2 (1996), 179–199 | MR | Zbl

[7] Simon B., “Schrödinger semigroups”, Bull. Amer. Math. Soc., 7:3 (1982), 447–526 | DOI | MR | Zbl

[8] Krein M. G., Langer G. K., “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi _\kappa $”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 ; 3, 54–69 | MR | Zbl | Zbl

[9] Geiler V. A., Margulis V. A., Chuchaev I. I., “Potentsialy nulevogo radiusa i operatory Karlemana”, Sib. matem. zh., 36:4 (1995), 828–841 | MR | Zbl

[10] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | Zbl

[11] Korotkov V. B., Integralnye operatory, Nauka, Novosibirsk, 1983

[12] Birman M. Sh., “K teorii samosopryazhennykh rasshirenii polozhitelno opredelennykh operatorov”, Matem. sb., 38:4 (1956), 431–450 | MR | Zbl

[13] Derkach V. A., Malamud M. M., “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[14] Teta A., “Quadratic forms for singular pertubations of the Laplacian”, Publ. RIMS Kyoto Univ., 26 (1990), 803–817 | DOI | MR | Zbl

[15] Koshmanenko V. D., Singulyarnye bilineinye formy v teorii vozmushenii samosopryazhennykh operatorov, Naukova dumka, Kiev, 1993

[16] Geiler V. A., “Dvumernyi operator Shredingera s odnorodnym magnitnym polem i ego vozmuscheniya periodicheskimi potentsialami nulevogo radiusa”, Algebra i analiz, 3:3 (1991), 1–48 | MR