The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 403-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the unique solvability of the Dirichlet problem for the biharmonic equation in the exterior of a compact set under the assumption that a generalized solution of this problem has a bounded Dirichlet integral with weight $|x|^a$. Depending on the value of the parameter $a$, we prove uniqueness theorems or present exact formulas for the dimension of the solution space of the Dirichlet problem.
@article{MZM_2001_70_3_a7,
     author = {H. Matevossian},
     title = {The {Exterior} {Dirichlet} {Problem} for the {Biharmonic} {Equation:} {Solutions} with {Bounded} {Dirichlet} {Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--418},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a7/}
}
TY  - JOUR
AU  - H. Matevossian
TI  - The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral
JO  - Matematičeskie zametki
PY  - 2001
SP  - 403
EP  - 418
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a7/
LA  - ru
ID  - MZM_2001_70_3_a7
ER  - 
%0 Journal Article
%A H. Matevossian
%T The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral
%J Matematičeskie zametki
%D 2001
%P 403-418
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a7/
%G ru
%F MZM_2001_70_3_a7
H. Matevossian. The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a7/

[1] Kudryavtsev L. D., “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1179–1199 | MR | Zbl

[2] Kondratev V. A., Oleinik O. A., “Teoremy edinstvennosti resheniya vneshnikh kraevykh zadach i analog printsipa Sen-Venana”, UMN, 39:4 (1984), 165–166 | MR | Zbl

[3] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, UMN, 43:5 (1988), 55–98 | MR

[4] Konkov A. A., “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | Zbl

[5] Matevosyan O. A., “O edinstvennosti resheniya pervoi kraevoi zadachi teorii uprugosti dlya neogranichennykh oblastei”, UMN, 48:6 (1993), 159–160 | MR | Zbl

[6] Matevosyan O. A., “O resheniyakh kraevykh zadach dlya sistemy teorii uprugosti i bigarmonicheskogo uravneniya v poluprostranstve”, Differents. uravneniya, 34:6 (1998), 806–811 | MR | Zbl

[7] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konechnymi ili uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 209–292 | MR | Zbl

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[9] Kondratiev V. A., Oleinik O. A., “On the behaviour at infinity of solutions of elliptic systems with a finite energy integral”, Arch. Rat. Mech. Anal., 99:1 (1987), 75–99 | DOI | MR | Zbl

[10] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | Zbl

[11] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977