Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 386-402

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first boundary-value problem for second-order nondivergent parabolic equations with, in general, discontinuous coefficients. We study the regularity of a boundary point assuming that in a neighborhood of this point the boundary of the domain is a surface of revolution. We prove a necessary and sufficient regularity condition in terms of parabolic capacities; for the heat equation this condition coincides with Wiener"s criterion.
@article{MZM_2001_70_3_a6,
     author = {I. T. Mamedov},
     title = {Boundary {Properties} of {Solutions} to {Second-Order} {Parabolic} {Equations} in {Domains} with {Special} {Symmetry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {386--402},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/}
}
TY  - JOUR
AU  - I. T. Mamedov
TI  - Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
JO  - Matematičeskie zametki
PY  - 2001
SP  - 386
EP  - 402
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/
LA  - ru
ID  - MZM_2001_70_3_a6
ER  - 
%0 Journal Article
%A I. T. Mamedov
%T Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
%J Matematičeskie zametki
%D 2001
%P 386-402
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/
%G ru
%F MZM_2001_70_3_a6
I. T. Mamedov. Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 386-402. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/