Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 386-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first boundary-value problem for second-order nondivergent parabolic equations with, in general, discontinuous coefficients. We study the regularity of a boundary point assuming that in a neighborhood of this point the boundary of the domain is a surface of revolution. We prove a necessary and sufficient regularity condition in terms of parabolic capacities; for the heat equation this condition coincides with Wiener"s criterion.
@article{MZM_2001_70_3_a6,
     author = {I. T. Mamedov},
     title = {Boundary {Properties} of {Solutions} to {Second-Order} {Parabolic} {Equations} in {Domains} with {Special} {Symmetry}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {386--402},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/}
}
TY  - JOUR
AU  - I. T. Mamedov
TI  - Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
JO  - Matematičeskie zametki
PY  - 2001
SP  - 386
EP  - 402
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/
LA  - ru
ID  - MZM_2001_70_3_a6
ER  - 
%0 Journal Article
%A I. T. Mamedov
%T Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry
%J Matematičeskie zametki
%D 2001
%P 386-402
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/
%G ru
%F MZM_2001_70_3_a6
I. T. Mamedov. Boundary Properties of Solutions to Second-Order Parabolic Equations in Domains with Special Symmetry. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 386-402. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a6/

[1] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971

[2] Wiener N., “The Dirichlet problem”, J. Math. Phys., 1924, no. 3, 127–146

[3] Petrowsky I. G., “Zur ersten Randwertaufgabe de Wärmeleitungsgleichung”, Comp. Math., 1935, no. 1, 383–419 | Zbl

[4] Landis E. M., “Neobkhodimoe i dostatochnoe uslovie regulyarnosti granichnoi tochki dlya zadachi Dirikhle dlya uravneniya teploprovodnosti”, Dokl. AN SSSR, 185:3 (1969), 517–520 | MR | Zbl

[5] Landis E. M., “O regulyarnosti granichnoi tochki dlya uravneniya teploprovodnosti”, Kachestvennaya teoriya kraevykh zadach matematicheskoi fiziki, Elm, Baku, 1991, 69–96

[6] Novruzov A. A., “O nekotorykh kriteriyakh regulyarnosti granichnykh tochek dlya lineinykh i kvazilineinykh parabolicheskikh uravnenii”, Dokl. AN SSSR, 209:4 (1973), 785–787 | MR | Zbl

[7] Ibragimov A. I., “O nekotorykh kachestvennykh svoistvakh reshenii uravnenii parabolicheskogo tipa vtorogo poryadka s nepreryvnymi koeffitsientami”, Differents. uravneniya, 18:2 (1982), 306–319 | MR | Zbl

[8] Mamedov I. T., “O regulyarnosti granichnykh tochek dlya lineinykh i kvazilineinykh uravnenii parabolicheskogo tipa”, Dokl. AN SSSR, 223:3 (1975), 559–561 | MR | Zbl

[9] Mamedov I. T., “O regulyarnosti granichnykh tochek dlya lineinykh uravnenii parabolicheskogo tipa”, Matem. zametki, 20:5 (1976), 717–723 | MR | Zbl

[10] Effros E. G., Kazdan J. L., “On the Dirichlet problem for the heat equation”, Indiana Univ. Math. J., 20 (1971), 683–694 | DOI | MR

[11] Lanconelli E., “Sul problema di Dirichlet per l'equazione del calore”, Ann. Math. Pura Appl., 97 (1973), 83–114 | DOI | MR | Zbl

[12] Mikhailova N. A., “O povedenii na granitse reshenii parabolicheskikh uravnenii $2$-go poryadka s nepreryvnymi koeffitsientami”, Matem. zametki, 38:6 (1985), 816–831 | MR

[13] Mamedov I. T., “Otsenka modulya nepreryvnosti resheniya pervoi kraevoi zadachi dlya uravneniya teploprovodnosti v granichnoi tochke”, Tr. IMM AN Azerb., 5 (13) (1996), 30–50

[14] Evans L. C., Gariepy R. F., “Wiener's criterion for the heat equation”, Arch. Rath. Mech. Ann., 78:4 (1992), 293–314 | DOI

[15] Mamedov I. T., “Some notions on parabolic potentials and capacities”, Trans. Acad. Sci. Azerb., 18:3–4 (1998), 115–127 | MR