Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 375-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a number of results on the integrability of the entropy and the weak solutions of the Dirichlet problem for nonlinear elliptic equations of second order depending on the integrability properties of the right-hand sides of these equations.
@article{MZM_2001_70_3_a5,
     author = {A. A. Kovalevsky},
     title = {Integrability of {Solutions} of {Nonlinear} {Elliptic} {Equations} with {Right-Hand} {Sides} from {Classes} {Close} to $L^1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {375--385},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a5/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 375
EP  - 385
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a5/
LA  - ru
ID  - MZM_2001_70_3_a5
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$
%J Matematičeskie zametki
%D 2001
%P 375-385
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a5/
%G ru
%F MZM_2001_70_3_a5
A. A. Kovalevsky. Integrability of Solutions of Nonlinear Elliptic Equations with Right-Hand Sides from Classes Close to $L^1$. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 375-385. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a5/

[1] Boccardo L., Gallouët T., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl

[2] Boccardo L., Gallouët T., “Nonlinear elliptic equations with right-hand side measures”, Comm. Partial Differential Equations, 17 (1992), 641–655 | MR | Zbl

[3] Boccardo L., Gallou"et T., Vazquez J. L., “Nonlinear elliptic equations in $\mathbb R^N$ without growth restrictions on the data”, J. Differential Equations, 105 (1993), 334–363 | DOI | MR | Zbl

[4] Bénilan Ph., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–273 | MR | Zbl

[5] Boccardo L., Gallouët T., “Summability of the solutions of nonlinear elliptic equations with right hand side measures”, J. Convex Anal., 3 (1996), 361–365 | MR | Zbl

[6] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | Zbl

[7] Lions J. L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969 | Zbl

[8] Kovalevsky A., “Entropy solutions of Dirichlet problem for a class of nonlinear elliptic fourth-order equations with $L^1$-data”, Nonlinear Boundary Value Problems, 9 (1999), 46–54 | Zbl

[9] Kovalevskii A. A., “Entropiinye resheniya zadachi Dirikhle dlya odnogo klassa nelineinykh ellipticheskikh uravnenii chetvertogo poryadka s $L^1$-pravymi chastyami”, Izv. RAN. Ser. matem, 65:2 (2001), 27–80 | MR | Zbl