On the Asymptotic Integration of Quasilinear Differential Equations
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 346-355
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the notion of convergence of solution spaces, we prove theorems about the asymptotic behavior of nearly linear systems. An example of an application of one of these theorems is given.
@article{MZM_2001_70_3_a2,
author = {S. R. Gabdrakhmanov and B. S. Klebanov and V. V. Filippov},
title = {On the {Asymptotic} {Integration} of {Quasilinear} {Differential} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {346--355},
year = {2001},
volume = {70},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a2/}
}
TY - JOUR AU - S. R. Gabdrakhmanov AU - B. S. Klebanov AU - V. V. Filippov TI - On the Asymptotic Integration of Quasilinear Differential Equations JO - Matematičeskie zametki PY - 2001 SP - 346 EP - 355 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a2/ LA - ru ID - MZM_2001_70_3_a2 ER -
S. R. Gabdrakhmanov; B. S. Klebanov; V. V. Filippov. On the Asymptotic Integration of Quasilinear Differential Equations. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 346-355. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a2/
[1] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | Zbl
[2] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 1993, no. 1, 103–154 | Zbl
[3] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl
[4] Michael E., “Continuous selections, I”, Ann. Math., 63 (1956), 361–382 | DOI | MR | Zbl