Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 458-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper points to the fact that properties of optimal solutions can be studied, bypassing the Cauchy problem theory for the equation of optimal control synthesis.
@article{MZM_2001_70_3_a12,
     author = {V. V. Filippov},
     title = {Optimal {Solution} {Space} and {Regularization} of {Equations} with {Discontinuities} in the {Space} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {458--467},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
JO  - Matematičeskie zametki
PY  - 2001
SP  - 458
EP  - 467
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/
LA  - ru
ID  - MZM_2001_70_3_a12
ER  - 
%0 Journal Article
%A V. V. Filippov
%T Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
%J Matematičeskie zametki
%D 2001
%P 458-467
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/
%G ru
%F MZM_2001_70_3_a12
V. V. Filippov. Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 458-467. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/

[1] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 48:1 (1993), 103–154 | MR | Zbl

[2] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | Zbl

[3] Filippov V. V., “Basic topological structures of the theory of ordinary differential equations”, Topology in Nonlinear Analysis, Banach Center Publ., 35, Polish Acad. Sci., Warsaw, 1996, 171–192 | Zbl

[4] Filippov V. V., Basic Topological Structures of Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998 | Zbl

[5] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 185:11 (1994), 95–118

[6] Filippov V. V., “O gomologicheskikh svoistvakh mnozhestv reshenii obyknovennykh differentsialnykh uravnenii”, Matem. sb., 188:6 (1997), 139–160 | MR | Zbl

[7] Bressan A., Colombo G., “Existence and continuous dependence for discontinuous O.D.E.'s”, Boll. Un. Mat. Ital. B (7), 4 (1990), 295–311 | MR | Zbl

[8] Filippov V. V., “Zamechanie o regulyarizatsionnoi teoreme A. Bressana”, Differents. uravneniya, 36:1 (2000), 355–358 | MR | Zbl

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985

[10] Filippov V. V., “Ob obyknovennykh differentsialnykh uravneniyakh s razryvnymi pravymi chastyami”, Differents. uravneniya, 30:8 (1994), 1299–1306 | MR | Zbl

[11] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvami po prostranstvennym peremennym”, Differents. uravneniya, 33:7 (1997), 885–891 | MR | Zbl

[12] Filippov V. V., “O teoreme sravneniya”, Matem. zametki, 57:4 (1995), 606–624 | MR | Zbl

[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[14] Klee V., “Some new results on smoothness and rotundity in normed linear spaces”, Math. Ann., 139:1 (1959), 51–63 | DOI | MR | Zbl

[15] Zamfirescu T., “Nearly all convex bodies are smooth and strictly convex”, Monatsh. Math., 103:1 (1987), 57–62 | DOI | MR | Zbl

[16] Brunovsky P., “The closed-loop time-optimal control. I: Optimality”, SIAM J. Control, 12 (1974), 624–634 | DOI | MR | Zbl