Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 458-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper points to the fact that properties of optimal solutions can be studied, bypassing the Cauchy problem theory for the equation of optimal control synthesis.
@article{MZM_2001_70_3_a12,
     author = {V. V. Filippov},
     title = {Optimal {Solution} {Space} and {Regularization} of {Equations} with {Discontinuities} in the {Space} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {458--467},
     year = {2001},
     volume = {70},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
JO  - Matematičeskie zametki
PY  - 2001
SP  - 458
EP  - 467
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/
LA  - ru
ID  - MZM_2001_70_3_a12
ER  - 
%0 Journal Article
%A V. V. Filippov
%T Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables
%J Matematičeskie zametki
%D 2001
%P 458-467
%V 70
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/
%G ru
%F MZM_2001_70_3_a12
V. V. Filippov. Optimal Solution Space and Regularization of Equations with Discontinuities in the Space Variables. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 458-467. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a12/

[1] Filippov V. V., “Topologicheskoe stroenie prostranstv reshenii obyknovennykh differentsialnykh uravnenii”, UMN, 48:1 (1993), 103–154 | MR | Zbl

[2] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | Zbl

[3] Filippov V. V., “Basic topological structures of the theory of ordinary differential equations”, Topology in Nonlinear Analysis, Banach Center Publ., 35, Polish Acad. Sci., Warsaw, 1996, 171–192 | Zbl

[4] Filippov V. V., Basic Topological Structures of Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998 | Zbl

[5] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 185:11 (1994), 95–118

[6] Filippov V. V., “O gomologicheskikh svoistvakh mnozhestv reshenii obyknovennykh differentsialnykh uravnenii”, Matem. sb., 188:6 (1997), 139–160 | MR | Zbl

[7] Bressan A., Colombo G., “Existence and continuous dependence for discontinuous O.D.E.'s”, Boll. Un. Mat. Ital. B (7), 4 (1990), 295–311 | MR | Zbl

[8] Filippov V. V., “Zamechanie o regulyarizatsionnoi teoreme A. Bressana”, Differents. uravneniya, 36:1 (2000), 355–358 | MR | Zbl

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985

[10] Filippov V. V., “Ob obyknovennykh differentsialnykh uravneniyakh s razryvnymi pravymi chastyami”, Differents. uravneniya, 30:8 (1994), 1299–1306 | MR | Zbl

[11] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvami po prostranstvennym peremennym”, Differents. uravneniya, 33:7 (1997), 885–891 | MR | Zbl

[12] Filippov V. V., “O teoreme sravneniya”, Matem. zametki, 57:4 (1995), 606–624 | MR | Zbl

[13] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[14] Klee V., “Some new results on smoothness and rotundity in normed linear spaces”, Math. Ann., 139:1 (1959), 51–63 | DOI | MR | Zbl

[15] Zamfirescu T., “Nearly all convex bodies are smooth and strictly convex”, Monatsh. Math., 103:1 (1987), 57–62 | DOI | MR | Zbl

[16] Brunovsky P., “The closed-loop time-optimal control. I: Optimality”, SIAM J. Control, 12 (1974), 624–634 | DOI | MR | Zbl