On Best Polynomial Approximations in $L_2$
Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 334-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the $\boldsymbol\tau$-moduli of smoothness of $m$th order, we calculate exact constants in Jackson-type inequalities. We also obtain the exact values of the $n$-widths of classes of functions whose $r$th derivatives are characterized by $\boldsymbol\tau$-moduli of smoothness majorized by functions satisfying certain constraints. We present an example of the majorant for which all the stated requirements are satisfied.
@article{MZM_2001_70_3_a1,
     author = {S. B. Vakarchuk},
     title = {On {Best} {Polynomial} {Approximations} in $L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--345},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a1/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - On Best Polynomial Approximations in $L_2$
JO  - Matematičeskie zametki
PY  - 2001
SP  - 334
EP  - 345
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a1/
LA  - ru
ID  - MZM_2001_70_3_a1
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T On Best Polynomial Approximations in $L_2$
%J Matematičeskie zametki
%D 2001
%P 334-345
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a1/
%G ru
%F MZM_2001_70_3_a1
S. B. Vakarchuk. On Best Polynomial Approximations in $L_2$. Matematičeskie zametki, Tome 70 (2001) no. 3, pp. 334-345. http://geodesic.mathdoc.fr/item/MZM_2001_70_3_a1/

[1] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR

[2] Chernykh N. I., “O neravenstvakh Dzheksona v $L_2$”, Tr. MIAN, 88, Nauka, M., 1967, 71–74 | MR

[3] Ligun A. A., “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[4] Yudin V. A., “Diofantovy priblizheniya v ekstremalnykh zadachakh”, Dokl. AN SSSR, 251:1 (1980), 54–57 | MR | Zbl

[5] Babenko A. G., “O tochnoi konstante v neravenstve Dzheksona v $L_2$”, Matem. zametki, 39:5 (1986), 651–664 | MR | Zbl

[6] Taikov L. V., “Strukturnye i konstruktivnye kharakteristiki funktsii iz $L_2$”, Matem. zametki, 25:2 (1979), 217–223 | MR

[7] Taikov L. V., “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[8] Yussef Kh., “O nailuchshikh priblizheniyakh funktsii i znacheniyakh poperechnikov klassov funktsii v $L_2$”, Primenenie funkts. analiza v teorii priblizhenii, Sb. nauchn. trudov, Kalininskii gosuniversitet, Kalinin, 1988, 100–114 | MR

[9] Ivanov Kamen G., “On a new characteristic of functions, I”, Serdika B'lg. Mat. Spisanie, 8:3 (1982), 262–279 | MR | Zbl

[10] Ivanov Kamen G., “On a new characteristic of functions. II: Direct and converse theorems for the best algebraic approximation in $C[-1,1]$ and $L_p[-1,1]$”, Pliska B'lg. Mat. Stud., 5 (1983), 151–163 | MR | Zbl

[11] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1976