Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2001_70_2_a8, author = {D. Repov\v{s} and P. V. Semenov}, title = {On the {Relation} between the {Nonconvexity} of a {Set} and the {Nonconvexity} of {Its} $\varepsilon${-Neighborhoods}}, journal = {Matemati\v{c}eskie zametki}, pages = {246--259}, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/} }
TY - JOUR AU - D. Repovš AU - P. V. Semenov TI - On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods JO - Matematičeskie zametki PY - 2001 SP - 246 EP - 259 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/ LA - ru ID - MZM_2001_70_2_a8 ER -
%0 Journal Article %A D. Repovš %A P. V. Semenov %T On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods %J Matematičeskie zametki %D 2001 %P 246-259 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/ %G ru %F MZM_2001_70_2_a8
D. Repovš; P. V. Semenov. On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 246-259. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/
[1] Michael E., “Paraconvex sets”, Scand. Math., 7 (1959), 372–376 | MR
[2] Semenov P. V., “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl
[3] Repovš D., Semenov P. V., “On functions of nonconvexity for graphs of continuous functions”, J. Math. Anal. Appl., 196 (1995), 1021–1029 | DOI | MR | Zbl
[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matem. analiz, 19, 1982, 127–231 | MR
[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “O novykh rezultatakh v teorii mnogoznachnykh otobrazhenii, I”, Itogi nauki i tekhniki. Matem. analiz, 25, 1987, 123–197 | MR
[6] Aubin J.-P., Cellina A., Differential Inclusions. Set-valued Maps and Viability Theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl
[7] Dugundji J., Granas A., Fixed Point Theory, I, Monogr. Math., 61, PWN, Warzsawa, 1982 | MR | Zbl
[8] Repovš D., Semenov P. V., Continuous Selections of Multivalued Mappings, Mathematics and its Applications, 455, Kluwer, Dordrecht, 1998 | Zbl
[9] Semenov P. V., “Teoremy o nepodvizhnoi tochke pri kontroliruemom otkaze ot vypuklosti znachenii mnogoznachnogo otobrazheniya”, Matem. sb., 189:3 (1998), 141–160 | MR | Zbl
[10] Garkavi A. L., “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki i tekhniki. Matematicheskii analiz 1967, VINITI, M., 1969, 75–132 | MR | Zbl
[11] Schepin E. V., Brodskii N. B., “Selektsii filtrovannykh mnogoznachnykh otobrazhenii”, Tr. MIAN, 212, Nauka, M., 1996, 220–240
[12] Chernavskii A. V., Kompaniits V. P., “Ekvivalentnost dvukh klassov otobrazhenii sfery”, Dokl. AN SSSR, 169:6 (1969), 1266–1268
[13] Lacher R., “Cell-like spaces”, Proc. Amer. Math. Soc., 20 (1969), 598–602 | DOI | MR | Zbl
[14] Gorniewicz L., Granas A., Kryszewsky W., “On the homotopy method in the fixed point index theory of multivalued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161 (1991), 457–473 | DOI | MR | Zbl
[15] Kryszewsky W., “Graph-approximation of set-valued maps on noncompact domains”, Topology Appl., 83 (1998), 1–21 | DOI | MR
[16] Dranishnikov A. N., Schepin E. V., “Kletochnopodobnye otobrazheniya. Problema povysheniya razmernosti”, UMN, 41:6 (1986), 49–90 | MR | Zbl
[17] Dranishnikov A. N., “$K$-theory of Eilenberg–Maclane spaces and cell-like mapping problem”, Trans. Amer. Math. Soc., 335 (1993), 91–103 | DOI | MR | Zbl