On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 246-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

To each closed subset $P$ of a Banach space, a real function $\alpha _P$ characterizing the nonconvexity of this set is associated. Inequalities of the type $\alpha _P(\cdot )1$ ensure good topological properties of the set $P$, such as contractibility, the property of being an extensor, etc. In this paper, examples of sets whose nonconvexity functions substantially differ from the nonconvexity functions of arbitrarily small neighborhoods of these sets are constructed. On the other hand, it is shown that, in uniformly convex Banach spaces, conditions of the type “the function of nonconvexity is less than one” are stable with respect to taking $\varepsilon$-neighborhoods of sets.
@article{MZM_2001_70_2_a8,
     author = {D. Repov\v{s} and P. V. Semenov},
     title = {On the {Relation} between the {Nonconvexity} of a {Set} and the {Nonconvexity} of {Its} $\varepsilon${-Neighborhoods}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {246--259},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/}
}
TY  - JOUR
AU  - D. Repovš
AU  - P. V. Semenov
TI  - On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods
JO  - Matematičeskie zametki
PY  - 2001
SP  - 246
EP  - 259
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/
LA  - ru
ID  - MZM_2001_70_2_a8
ER  - 
%0 Journal Article
%A D. Repovš
%A P. V. Semenov
%T On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods
%J Matematičeskie zametki
%D 2001
%P 246-259
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/
%G ru
%F MZM_2001_70_2_a8
D. Repovš; P. V. Semenov. On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its $\varepsilon$-Neighborhoods. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 246-259. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a8/

[1] Michael E., “Paraconvex sets”, Scand. Math., 7 (1959), 372–376 | MR

[2] Semenov P. V., “Funktsionalno paravypuklye mnozhestva”, Matem. zametki, 54:6 (1993), 74–81 | Zbl

[3] Repovš D., Semenov P. V., “On functions of nonconvexity for graphs of continuous functions”, J. Math. Anal. Appl., 196 (1995), 1021–1029 | DOI | MR | Zbl

[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Mnogoznachnye otobrazheniya”, Itogi nauki i tekhniki. Matem. analiz, 19, 1982, 127–231 | MR

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “O novykh rezultatakh v teorii mnogoznachnykh otobrazhenii, I”, Itogi nauki i tekhniki. Matem. analiz, 25, 1987, 123–197 | MR

[6] Aubin J.-P., Cellina A., Differential Inclusions. Set-valued Maps and Viability Theory, Grundlehren Math. Wiss., 264, Springer-Verlag, Berlin, 1984 | MR | Zbl

[7] Dugundji J., Granas A., Fixed Point Theory, I, Monogr. Math., 61, PWN, Warzsawa, 1982 | MR | Zbl

[8] Repovš D., Semenov P. V., Continuous Selections of Multivalued Mappings, Mathematics and its Applications, 455, Kluwer, Dordrecht, 1998 | Zbl

[9] Semenov P. V., “Teoremy o nepodvizhnoi tochke pri kontroliruemom otkaze ot vypuklosti znachenii mnogoznachnogo otobrazheniya”, Matem. sb., 189:3 (1998), 141–160 | MR | Zbl

[10] Garkavi A. L., “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki i tekhniki. Matematicheskii analiz 1967, VINITI, M., 1969, 75–132 | MR | Zbl

[11] Schepin E. V., Brodskii N. B., “Selektsii filtrovannykh mnogoznachnykh otobrazhenii”, Tr. MIAN, 212, Nauka, M., 1996, 220–240

[12] Chernavskii A. V., Kompaniits V. P., “Ekvivalentnost dvukh klassov otobrazhenii sfery”, Dokl. AN SSSR, 169:6 (1969), 1266–1268

[13] Lacher R., “Cell-like spaces”, Proc. Amer. Math. Soc., 20 (1969), 598–602 | DOI | MR | Zbl

[14] Gorniewicz L., Granas A., Kryszewsky W., “On the homotopy method in the fixed point index theory of multivalued mappings of compact absolute neighborhood retracts”, J. Math. Anal. Appl., 161 (1991), 457–473 | DOI | MR | Zbl

[15] Kryszewsky W., “Graph-approximation of set-valued maps on noncompact domains”, Topology Appl., 83 (1998), 1–21 | DOI | MR

[16] Dranishnikov A. N., Schepin E. V., “Kletochnopodobnye otobrazheniya. Problema povysheniya razmernosti”, UMN, 41:6 (1986), 49–90 | MR | Zbl

[17] Dranishnikov A. N., “$K$-theory of Eilenberg–Maclane spaces and cell-like mapping problem”, Trans. Amer. Math. Soc., 335 (1993), 91–103 | DOI | MR | Zbl