Jorke's Theorem and Wirtinger's Inequality
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 237-245
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider autonomous systems of ordinary differential equations (of first or higher order) whose right-hand sides satisfy the Lipschitz condition stated in terms of the Euclidean metric and of nonnegative matrices. Using Wirtinger's inequality, we prove theorems on the lower bounds for the periods of periodic nonstationary solutions of autonomous systems, which generalize Jorke's theorem. In the case of nonnegative indecomposable matrices we discuss the sharpness of the estimates obtained.
@article{MZM_2001_70_2_a7,
author = {A. I. Perov},
title = {Jorke's {Theorem} and {Wirtinger's} {Inequality}},
journal = {Matemati\v{c}eskie zametki},
pages = {237--245},
year = {2001},
volume = {70},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a7/}
}
A. I. Perov. Jorke's Theorem and Wirtinger's Inequality. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 237-245. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a7/
[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967
[2] Jorke J. A., “Periods of periodic solutions and the Lipschitz constants”, Proc. Amer. Math. Soc., 22 (1964), 509–512
[3] Krasnoselskii M. A., Lifshits E. A., Sobolev A. V., Pozitivnye lineinye sistemy, Nauka, M., 1985
[4] Kryukov B. I., Vynuzhdennye kolebaniya suschestvenno nelineinykh sistem, Mashinostroenie, M., 1984
[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948