Stability Criteria for Solutions of Systems of Linear Deterministic or Stochastic Delay Difference Equations with Continuous Time
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 213-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give spectral and algebraic coefficient criteria (necessary and sufficient conditions) as well as sufficient algebraic coefficient conditions for the Lyapunov asymptotic stability of solutions to systems of linear deterministic or stochastic delay difference equations with continuous time under white noise coefficient perturbations for the case in which all delay ratios are rational. For stochastic systems, mean-square asymptotic stability is studied. The Lyapunov function method is used. Our criteria on algebraic coefficients and our sufficient conditions are stated in terms of matrix Lyapunov equations (for deterministic systems) and matrix Sylvester equations (for stochastic systems).
@article{MZM_2001_70_2_a5,
     author = {D. G. Korenevskij},
     title = {Stability {Criteria} for {Solutions} of {Systems} of {Linear} {Deterministic} or {Stochastic} {Delay} {Difference} {Equations} with {Continuous} {Time}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a5/}
}
TY  - JOUR
AU  - D. G. Korenevskij
TI  - Stability Criteria for Solutions of Systems of Linear Deterministic or Stochastic Delay Difference Equations with Continuous Time
JO  - Matematičeskie zametki
PY  - 2001
SP  - 213
EP  - 229
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a5/
LA  - ru
ID  - MZM_2001_70_2_a5
ER  - 
%0 Journal Article
%A D. G. Korenevskij
%T Stability Criteria for Solutions of Systems of Linear Deterministic or Stochastic Delay Difference Equations with Continuous Time
%J Matematičeskie zametki
%D 2001
%P 213-229
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a5/
%G ru
%F MZM_2001_70_2_a5
D. G. Korenevskij. Stability Criteria for Solutions of Systems of Linear Deterministic or Stochastic Delay Difference Equations with Continuous Time. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 213-229. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a5/

[1] Korenevskii D. G., “K asimptoticheskoi ustoichivosti reshenii sistem lineinykh determinirovannykh i stokhasticheskikh statsionarnykh raznostnykh uravnenii s zapazdyvaniem”, Dokl. AN SSSR, 322:2 (1992), 219–223 | MR | Zbl

[2] Korenevskii D. G., “Algebraicheskii koeffitsientnyi kriterii skhodimosti “s zapasom” (eksponentsialnoi ustoichivosti) reshenii lineinykh statsionarnykh raznostnykh uravnenii”, Dokl. AN SSSR, 313:6 (1990), 1320–1323

[3] Elsgolts L. E., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1964

[4] Zhabko A. P., Kharitonov V. L., Metody lineinoi algebry v zadachakh upravleniya, S.-Peterburgskii un-t, S.-Pb., 1993 | Zbl

[5] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[6] Kharitonov V. L., “Globalnaya ustoichivost po sdvigam vozmuschennykh sistem raznostnykh uravnenii”, Avtomatika (Kiev), 1991, no. 3, 3–8 | MR | Zbl

[7] Kharitonov V. L., “O sokhranenii svoistva globalnoi ustoichivosti po sdvigam pri variatsiyakh parametrov”, Avtomatika i telemekhanika, 1992, no. 5, 26–30 | MR | Zbl

[8] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, M., 1967

[9] Sharkovskii A. N., Maistrenko Yu. L., Romanenko E. Yu., Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986

[10] Korenevskii D. G., Ustoichivost dinamicheskikh sistem pri sluchainykh vozmuscheniyakh parametrov. Algebraicheskie kriterii, Naukova dumka, Kiev, 1989