Point-Invariant Classes of Third-Order Ordinary Differential Equations
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 195-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the action of point transformations of general form on third-order ordinary differential equation resolved for the third derivative. Special classes of equations that are preserved under these transformations are constructed.
@article{MZM_2001_70_2_a3,
     author = {V. V. Dmitrieva},
     title = {Point-Invariant {Classes} of {Third-Order} {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--200},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a3/}
}
TY  - JOUR
AU  - V. V. Dmitrieva
TI  - Point-Invariant Classes of Third-Order Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2001
SP  - 195
EP  - 200
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a3/
LA  - ru
ID  - MZM_2001_70_2_a3
ER  - 
%0 Journal Article
%A V. V. Dmitrieva
%T Point-Invariant Classes of Third-Order Ordinary Differential Equations
%J Matematičeskie zametki
%D 2001
%P 195-200
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a3/
%G ru
%F MZM_2001_70_2_a3
V. V. Dmitrieva. Point-Invariant Classes of Third-Order Ordinary Differential Equations. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 195-200. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a3/

[1] Liouville R., “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Polytechnique, 59 (1889), 7–76

[2] Lie S., Vorlesungen über continuierliche Gruppen, Teubner Verlag, Leipzig, 1893

[3] Lie S., Theorie der Transformationsgruppen, V. III, Teubner Verlag, Leipzig, 1930

[4] Tresse A., “Sur les invariants différentes des groupes continus de transformations”, Acta Math., 18 (1894), 1–88 | DOI

[5] Tresse A., “Determination des invariants ponctuels de l'équation différentielle ordinaire de 2ème ordre: $y''=w(x,y,y')$”, Preisschriften der fürstlichen Jablonowski'schen Gesellschaft, XXXII, Hirzel, Leipzig, 1896

[6] Cartan E., “Sur les variétés à connection projective”, Bull. Math. Soc. France, 52 (1924), 205–241 | MR

[7] Cartan E., “Sur les variétés à connexion affine et la théorie de la relativité generalisée”, Ann. École Norm. Sup., 40 (1923), 325–412 ; 41 (1924), 1–25 ; 42 (1925), 17–88 | MR | MR | MR

[8] Cartan E., “Sur les espaces à connexion conforme”, Ann. Soc. Math. Pologne, 2 (1923), 171–221

[9] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Platon, Volgograd, 1997

[10] Thomsen G., “Über die topologischen Invarianten der Differentialgleichung $y''=f(x,y){y'}^3+g(x,y){y'}^2+h(x,y)y'+k(x,y)$”, Abh. Math. Sem. Hamburg. Univ., 7 (1930), 301–328 | DOI

[11] Grissom C., Thompson G., Wilkens G., “Linearisation of second-order ordinary differential equations via Cartan's equivalence method”, J. Differential Equations, 77 (1989), 1–15 | DOI | MR | Zbl

[12] Ibragimov N. Kh., Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Math. Methods in Practice, 4, Wiley, England, 1999 | Zbl

[13] Dryuma V. S., Geometricheskaya teoriya nelineinykh dinamicheskikh sistem, Preprint IM s VTs AN MSSR, Kishinev, 1986

[14] Dryuma V. S., “O teorii podmnogoobrazii proektivnykh prostranstv, opredelyaemykh differentsialnymi uravneniyami”, Sb. statei, IM s VTs AN MSSR, Kishinev, 1989, 75–87

[15] Dryuma V. S., “Geometricheskie svoistva mnogomernykh nelineinykh differentsialnykh uravnenii i fazovoe prostranstvo dinamicheskikh sistem s finslerovoi metrikoi”, TMF, 99:2 (1994), 241–249 | MR | Zbl

[16] Bordag L. A., Dryuma V. S., Investigation of Dynamical Systems Using Tools of the Theory of Invariants and Projective Geometry, NTZ-Preprint 24/95, Leipzig, 1995 ; arXiv: solv-int/9705006 | Zbl

[17] Bordag L. A., “Symmetries of the Painleve equations and the connection with projective differential geometry”, 7th EWM Meeting Proceedings (Trieste, Italy), Hindawi Publishing Corporation, 1997, 145–159

[18] Babich M. V., Bordag L. A., “Projective differential geometrical structure ot the Painlevé equations”, J. Differential Equations, 157:2 (1999), 452–485 | DOI | MR | Zbl

[19] Romanovskii Yu. R., Vychislenie lokalnykh simmetrii obyknovennykh differentsialnykh uravnenii vtorogo poryadka metodom ekvivalentnosti Kartana, Rukopis

[20] Bacso S., Matsumoto M., “On Finsler spaces of Douglas type. A generalisation of the notion of Berwald space”, Publ. Math. Debrecen, 51:3–4 (1997), 385–406 | MR | Zbl

[21] Gusyatnikova V. N., Yumaguzhin V. A., “Tochechnye preobrazovaniya i linearizuemost obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Matem. zametki, 49:1 (1991), 146–148 | MR

[22] Dmitrieva V. V., Sharipov R. A., On the point transformations for the second order differential equations, arXiv: solv-int/9703003

[23] Sharipov R. A., On the point transformations for the equation $y''=P+3Qy'+3R{y'}^2+S{y'}^3$, arXiv: solv-int/9706003

[24] Sharipov R. A., Effective procedure of point classification for the equations $y''=P+3Qy'+\allowmathbreak 3R{y'}^2+S{y'}^3$, arXiv: math.DG/9802027

[25] Mikhailov O. N., Sharipov R. A., On the point expansion for a certain class of differential equations of second order, arXiv: solv-int/9712001