Integral Norms of Trigonometric Polynomials
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 308-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

For trigonometric polynomials with coefficients equal to 1 or 0 in absolute value whose spectra are located on the left-hand side of binary blocks, we establish two-sided estimates of the $L_1$-norm.
@article{MZM_2001_70_2_a13,
     author = {V. A. Yudin},
     title = {Integral {Norms} of {Trigonometric} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {308--315},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a13/}
}
TY  - JOUR
AU  - V. A. Yudin
TI  - Integral Norms of Trigonometric Polynomials
JO  - Matematičeskie zametki
PY  - 2001
SP  - 308
EP  - 315
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a13/
LA  - ru
ID  - MZM_2001_70_2_a13
ER  - 
%0 Journal Article
%A V. A. Yudin
%T Integral Norms of Trigonometric Polynomials
%J Matematičeskie zametki
%D 2001
%P 308-315
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a13/
%G ru
%F MZM_2001_70_2_a13
V. A. Yudin. Integral Norms of Trigonometric Polynomials. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 308-315. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a13/

[1] Konyagin S. V., “O probleme Littlvuda”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 243–265 | MR | Zbl

[2] McGehee O. C., Pigno L., Smith B., “Hardy's inequality and the $L^1$ norm of exponential sums”, Ann. of Math., 113:3 (1981), 613–618 | DOI | MR | Zbl

[3] Bochkarev S. V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218, Nauka, M., 1997, 74–76 | MR | Zbl

[4] Weiss M., “A theorem on lacunary trigonometric series”, Orthogonal Expansions and Their Continious Analogues, Proc. Conf. South. Ill. Univ. (Edwardsville, 1967), SIU Press, Carbondale, Illinois, 1968, 227–230

[5] Balashov L. A., Telyakovskii S. A., “Nekotorye svoistva lakunarnykh ryadov i integriruemost trigonometricheskikh ryadov”, Tr. MIAN, 143, Nauka, M., 1977, 32–41 | MR | Zbl

[6] Smith B., “Two trigonometric designs: one-sided Riesz products and Littlewood products”, General Inequalities 3, Intern. Series of Numer. Math., 64, Birkhäuser, Basel, 1983, 141–148

[7] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965