Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of stationary variational inequalities for Navier–Stokes type operators that can be used to represent problems with nonlinear boundary conditions for equations of motion of viscous fluids. The main result (the solvability theorem) is used for studying one-sided boundary-value problems for equations of heat convection of viscous fluids.
@article{MZM_2001_70_2_a12,
     author = {A. Yu. Chebotarev},
     title = {Variational {Inequalities} for {Navier--Stokes} {Type} {Operators} and {One-Sided} {Problems} for {Equations} of {Viscous} {Heat-Conducting} {Fluids}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {296--307},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
JO  - Matematičeskie zametki
PY  - 2001
SP  - 296
EP  - 307
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/
LA  - ru
ID  - MZM_2001_70_2_a12
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
%J Matematičeskie zametki
%D 2001
%P 296-307
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/
%G ru
%F MZM_2001_70_2_a12
A. Yu. Chebotarev. Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/

[1] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[2] Kazhikhov A. V., “Razreshimost nekotorykh odnostoronnikh kraevykh zadach dlya uravnenii Nave–Stoksa”, Dinamika sploshnoi sredy, no. 16, Novosibirsk, 1974, 5–34

[3] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[4] Chebotarev A. Yu., “Ob odnostoronnikh i ekstremalnykh zadachakh, svyazannykh s sistemoi Stoksa”, Dinamika sploshnoi sredy, no. 102, Novosibirsk, 1991, 133–147 | MR

[5] Chebotarev A. Yu., “Subdifferentsialnye kraevye zadachi dlya statsionarnykh uravnenii Nave–Stoksa”, Differents. uravneniya, 28:8 (1992), 1443–1450 | MR | Zbl

[6] Bre'zis H., “Inéquations variationnelles relatives a l'operateur de Navier–Stokes”, J. Math. Anal. Appl., 39:1 (1972), 159–165 | DOI | MR | Zbl

[7] Müller M., Naumann J., “On evolution inequalities of a modified Navier–Stokes type. I; II; III”, Aplikace Matematiky, 24:2 (1978), 174–184 ; 6, 397–407 ; 1979 24:2, 81–91 | Zbl

[8] Chebotarev A. Yu., “Razreshimost statsionarnoi odnostoronnei zadachi protekaniya dlya idealnoi zhidkosti”, Dinamika sploshnoi sredy, no. 79, Novosibirsk, 1987, 129–135 | MR

[9] Chebotarev A. Yu., “Statsionarnye variatsionnye neravenstva v modeli neodnorodnoi neszhimaemoi zhidkosti”, Sib. matem. zh., 38:5 (1997), 1184–1193 | MR | Zbl

[10] Ukhovskii M. F., Yudovich V. I., “Ob uravneniyakh statsionarnoi konvektsii”, PMM, 27:2 (1963), 295–300 | MR

[11] Yudovich V. I., “O vozniknovenii konvektsii”, PMM, 30:6 (1966), 1000–1005

[12] Yudovich V. I., “Svobodnaya konvektsiya i vetvlenie”, PMM, 31:1 (1967), 101–111 | Zbl

[13] Zarubin A. G., “Zadacha statsionarnoi teplovoi konvektsii”, ZhVMiMF, 8:6 (1968), 1378–1383 | MR | Zbl

[14] Zarubin A. G., Tiunchik M. F., “Nekotorye zadachi mekhaniki s razryvnymi granichnymi usloviyami i negladkoi granitsei”, Differents. uravneniya, 14:9 (1978), 1632–1637 | MR | Zbl

[15] Alekseev G. V., Teoreticheskii analiz statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii, Preprint IPM DVO RAN, Dalnauka, Vladivostok, 1996

[16] Alekseev G. V., Tereshko D. A., Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplovoi konvektsii, Preprint IPM DVO RAN, Dalnauka, Vladivostok, 1997

[17] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[18] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | Zbl

[19] Panagiotopulos P., Neravenstva v mekhanike i ikh prilozheniya, Mir, M., 1989