Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a class of stationary variational inequalities for Navier–Stokes type operators that can be used to represent problems with nonlinear boundary conditions for equations of motion of viscous fluids. The main result (the solvability theorem) is used for studying one-sided boundary-value problems for equations of heat convection of viscous fluids.
@article{MZM_2001_70_2_a12,
author = {A. Yu. Chebotarev},
title = {Variational {Inequalities} for {Navier--Stokes} {Type} {Operators} and {One-Sided} {Problems} for {Equations} of {Viscous} {Heat-Conducting} {Fluids}},
journal = {Matemati\v{c}eskie zametki},
pages = {296--307},
publisher = {mathdoc},
volume = {70},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/}
}
TY - JOUR AU - A. Yu. Chebotarev TI - Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids JO - Matematičeskie zametki PY - 2001 SP - 296 EP - 307 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/ LA - ru ID - MZM_2001_70_2_a12 ER -
%0 Journal Article %A A. Yu. Chebotarev %T Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids %J Matematičeskie zametki %D 2001 %P 296-307 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/ %G ru %F MZM_2001_70_2_a12
A. Yu. Chebotarev. Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/