Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of stationary variational inequalities for Navier–Stokes type operators that can be used to represent problems with nonlinear boundary conditions for equations of motion of viscous fluids. The main result (the solvability theorem) is used for studying one-sided boundary-value problems for equations of heat convection of viscous fluids.
@article{MZM_2001_70_2_a12,
     author = {A. Yu. Chebotarev},
     title = {Variational {Inequalities} for {Navier--Stokes} {Type} {Operators} and {One-Sided} {Problems} for {Equations} of {Viscous} {Heat-Conducting} {Fluids}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {296--307},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
JO  - Matematičeskie zametki
PY  - 2001
SP  - 296
EP  - 307
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/
LA  - ru
ID  - MZM_2001_70_2_a12
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids
%J Matematičeskie zametki
%D 2001
%P 296-307
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/
%G ru
%F MZM_2001_70_2_a12
A. Yu. Chebotarev. Variational Inequalities for Navier--Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 296-307. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a12/