On Right Symmetric and Novikov Nil-Algebras of Bounded Index
Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 289-295.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a field of characteristic zero. It is proved that a right symmetric nil-algebra of index $n$ over $\Phi$ is right nilpotent, and a Novikov nil-algebra of index $n$ over $\Phi$ is nilpotent.
@article{MZM_2001_70_2_a11,
     author = {V. T. Filippov},
     title = {On {Right} {Symmetric} and {Novikov} {Nil-Algebras} of {Bounded} {Index}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--295},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a11/}
}
TY  - JOUR
AU  - V. T. Filippov
TI  - On Right Symmetric and Novikov Nil-Algebras of Bounded Index
JO  - Matematičeskie zametki
PY  - 2001
SP  - 289
EP  - 295
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a11/
LA  - ru
ID  - MZM_2001_70_2_a11
ER  - 
%0 Journal Article
%A V. T. Filippov
%T On Right Symmetric and Novikov Nil-Algebras of Bounded Index
%J Matematičeskie zametki
%D 2001
%P 289-295
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a11/
%G ru
%F MZM_2001_70_2_a11
V. T. Filippov. On Right Symmetric and Novikov Nil-Algebras of Bounded Index. Matematičeskie zametki, Tome 70 (2001) no. 2, pp. 289-295. http://geodesic.mathdoc.fr/item/MZM_2001_70_2_a11/

[1] Balinskii A. A., Novikov S. P., “Skobki Puassona gidrodinamicheskogo tipa, frobeniusovy algebry i algebry Li”, Dokl. AN SSSR, 283:5 (1985), 1036–1039 | MR | Zbl

[2] Osborn J. M., “Novikov algebras”, Nova J. Algebra Geometry, 1:1 (1992), 1–13 | MR | Zbl

[3] Vinberg E. B., “Vypuklye odnorodnye oblasti”, Dokl. AN SSSR, 141:3 (1961), 521–524 | MR | Zbl

[4] Zelmanov E. I., “Ob engelevykh algebrakh Li”, Sib. matem. zh., 29:5 (1988), 112–117 | MR | Zbl

[5] Zelmanov E. I., “Ob odnom klasse lokalnykh translyatsionno invariantnykh algebr Li”, Dokl. AN SSSR, 292:6 (1987), 1294–1297 | MR | Zbl